\f

EEEEEEE DDOD A SSSSSS

EE DDDDD AA AA S§ SS
EEEEE 0D DD AA AA SS -
EEEEE DD DD AAAAAAA SSSSSS ’
EE 00 DD AA AA SS
EEEEEEE DDDDD AA AA SS SS
EEEEEEE 0DDD AA AR SSSSSS

Model I, Model II, Model III, & LDOS 6.x

Editor Assembler Reference Manual

Copyright (C) 1980 by MISOSYS
A1l rights reserved

Reproduction 1in any manner, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without written permission, is prohibited.

MISOSYS
P. 0. Box 4848
Alexandria, Virginia 2230¢3-0848

#x« NQTICE®*w
« | IMITED WARRANTY®®2

: ~
MISOSYS shall have no liabjlity or responsibility to the purchaser or7

any other person, company, or entity with respect to any liability, 1loss, or
damage caused or alleged to have been caused by this product, including but
not limited to any interruption of service, loss of business and anticipatory
profits, or consequential damages resulting from the operation or use of this
program.

Should this program recording or recording media prove to be defective
in manufacture, labeling, or packaging, MI will replace the program upon
return of the program package to MISOSYS within 9 days of .the date of
purchase. Except for this replacement policy, the sale or subsequent use of
this program material is without warranty or liability.

**« ARNING® %

This program package 1is copyrighted with all rights reserved. The
distribution and sale of this program is intended for the personal use of the
original purchaser only and for use only on the computer system noted herein.
Furthermore, copying, duplicating, selling, or otherwise distributing this
product {s expressly forbidden. In accepting this product, the purchaser
recognizes and accepts this agreement.

MISOSYS
P. 0. Box 4848
Alexandria, Virginia 223@¢3-p848
703-960-2998

-

N

B Y

(L FRkkkhdkhkkhkkikRhkkdkikkiihkkkikkikrikikhkiiiikki ki kikkiih>
(AR RRRRRAARR IR TR TR A RRREARTR KRR KRR RIR ATk Rk hkkkkkhx))

(Kwiwxxx . MISOSYS EDAS - Editor Assembler IV v
(K*exxxx Copyright 1988, by Roy Soltoff Fkhk>>

CHRRRRIRERTRRRIAIRRREXERTR KA ATIRITRTX I IR TTAThTIIThAIAkRD>
(K RRKRRRTRKAKAAKERRREERKIRTRTTIERK IR K IR IdhThhkTkkkkkkhkkkkkRhkD

Table of Cbntents

Preface 0 0000000 NN OO COESOSOEtRBOINIPONISIRNOESNYNSETESIODES

Introduction S G & 50 0E0 6P OCEED PN TEOOOBEEDIOSOISINETESEESNLDS
Notation Conventions ...'...!.Q..'...I.l...........&..
Executing EDAS 9 © 000808 OO SO HOOGBOSE OISO ENSIOOESEPEN SN
Assembly Language SyNtaXx ...:cececcesccscsascscscscces

Labe]s P8 0ROV OOOLOIPOIOOOPNOUNIERNIPIOCOLOOOSIREIORIRODIOSTDO

Operands GO T OONSGPCONROIOPEDEOOOONIRENBRIOPEEOINOIEROEDONDN

]
WHFRWWH RO 5 WR 2 bt el N b oo

comments S S 0 OGP EN SOOI NEECOIOS PSS CI OO NOESS

EXpresSions weeecececessssosssessccoosnssscscssnoscocae
Z-80 Status Indicators (F1agsS) eeeececceccceccscnccces
PSEUdO'ODS L N N N N N N NN NN RN RN
Assembler Directives .c.ceeseecescescccoscesccscscocnnas
Macro ProCeSSOr t.cceccececssccecessscocssassoncsccana
EDAS Command SUMMArY .cececocccsscscscssscrsssosocsanas
EDAS'COmNQNd Detai]s PGB S P OAESENINBOTEEIONOEDINBOCOOEENS

Assemb]e 8 0O RNBS OSSN ESNOOOSOREEENSNOIISEONNESDNS

\4‘4\40\ULhtM(f(»bﬂOﬂtuhob‘bﬂ

'
)

Branch 20 C VOV OGO PEP 00N CPS 000N IRRIGOEIOECROIOEOPRAEROIEBOES 7

Change LI R BN BN B BN BN BE B BN BN BE NN BN OBE BN BN NCNC R BN N BN BN BN BN B BN OBE BN BN BB BN B BN BN BN BN NN N) 7

Copy SO OPLOPNPITIINIRNNCIOENINNDEOIIRNSINIOITIRIOECEOERIRSTOERIRNOTOES 7'
De]ete PP OGN IDORES RPN OO DPEN SO EN PO NE SN 7

Edit S 0 00 800080 SO0 P0O O e SN OO DESONDEOENOENOLEPITEIEOINSNOINSES 7_16
Find LR B K N R B BN K BN BN BN BN B BE BN R BN OBE BN BN B BN BN BN BE R B BN OBNCBE AN B BN BN BN BN BN BN NCIE B N AN 3
HardCOPY cecececscscsecssacscaccscsssssssnsncance &
Insert LK BN B N B BN BN OBE B BN B NK R BN BN BN B BN BN BE BE BN BN BN BN BN BN BY BN BN R BN BN RN BN BN AR BN J
Kill fileSPeC coevececcvooscnscseccssnccsscsncnaa
Load fileSpeCescececcreccescscscesccscssncnccanes /=22
Move LR R AKX BN BE BE BN BE BN B BN BN BK B BN BN BN BN BN BN BE BN BN BE BF BE BN BN BN AR BN BE B BNCAE BN BN BN B BN B Y A 7-24
Renumber ...;Q......'Cl........'...'.‘....l...l.. 7‘26
Print PP G PO EE PN NESICEEETOI P ESIEEPITRGOEINESIEEES 7‘27
Query Directory e PSR OEOLLBEINOETPEEISROESOOEOTBSBOIOETSS 7‘28
Rep]ace ® 9 0 S P OB O OO OO OEEOEENOIPTDOOSLOESISISIENEDS 7-29
SWitCh Case 00 0000 S50 PVBOINEPB0EP0 838000 0COCRRGINES 7‘3¢
TYPE cevevcecocsrsanscoscsscsccscsscssasasssccses /=31
Usage, Memory cccececcesceccscacsocsencsssenssease 7232
View fi]ESDECQ.O..QQC....Q.Q‘O.!...CQO.ll.....l.. 7-33
Nrite fi]espec....Q...'.0"."C.l....‘..‘l.'ll... 7-34
Extend PSS G0 B P LI PINECEINPIBNOERNIESOFERSEEEPVSOSNGGIES 7-36
OHE (l) S0 0 0 S0 PCEEILIICRENENENNRIIBOOESNIBOIIIRTOETRES 7'37
Cross Reference Uti1ity ceeeececencccecsccocssesccecses 8-1
Tape To Disk ULTi1ity ceceecececoccocoscensacncsscsseaes 9=-1
Error MeSSagesS c.eeeececescocscsccccsssnssascscscsseces 10-1
Technical Specifications ceceseeesssccecocscsscsssoese 11l=1
Z-80 Quick Reference Card seeeecececsscencenssssss Appendix

e Fifth Edition 1983

wy

.

\/

Preface

EDAS is an evolutionary product. It has been designed to provide many
useful assembler capabilities for the most discriminating programmer while at
the same time, 1its command syntax and ease of use provide for an excellent
assembler language development tool for the programmer from beginner through
advanced level. Its editing syntax has been implemented to appear identical
to that found in the 'B@s BASIC interpreter so as to provide a high degree of -
familiarity and minimal training requirements. '

Although considerable effort was expended to make the user reference
manual as complete as possible, this documentation package in no way is to be
considered an instructive guide into the writing of Z-88 source programs.

‘Many reference texts are available that deal with learning and improving your

abilities to program 1in assembly language. If you are Tearning assembly
language, your reference materials should include at least one of the many

"good texts on. the market, an asortment of periodicals, and a good

disassembler.

My advice 1s to peruse the contents of this reference manual to
familiarize yourself with its information and the Editor Assembler's
capabilities as well as the Utility Applications included on the distribution
diskette. If you have any questions concerning this application, feel free to
call or write; however, be prepared to give your EDAS registration number. It
would]also be helpful to make sure your questions are not answered in the
manual.

Speaking of registrations, MISOSYS would like to provide you with the
best technical support possible. To provide this support, we need to know who
our customers are. So please fill out the registration form packaged with the
diskette and return it to us promptly - postal card postage is sufficient.
The registration number located on the diskette label must be entered onto
the registration card and should also be entered in the space provided below.
The registration number must be mentioned on all correspondance with us or
when telephoning for service, so don't lose it. Thank you.

Rep Letloff

EDAS Registration

“~y

Introduction to EDAS Version IV

DISTRIBUTION DISKS

The Model I/III EDAS IV version and each of its utilities, are single
programs that work on both the Model I and III under LDOS. It is distributed
on a 35 track single density data diskette. The LDOS 6.x EDAS Version IV is
distributed on a track double density data diskette. The Model II Version
is distributed on an 8 inch diskette.

It is strongly recommended that before using your new Editor Assembler,
you should make a BACKUP copy to use in a working environment and retain the
EDAS diskette as your MASTER copy. This “master should be back up to
produce a “working® copy and the “master® archived. The BACKUP " utility
procedures are found in your DOS Owner's Manual in the section entitled
“UTILITY PROGRAMS®. After creating a BACKUP copy of the EDAS diskette, store
the MASTER diskette in a safe place. Use only your "“working" copy for
production.

THE EDAS FACILITY

The MISOSYS Editor Assembler is a RAM-resident text editor and RAM
resident or direct disk assembler for the Model I, II, and IIl microcomputer
systems, as well as computers running under LDOS 6.x. The Editor Assembler
was designed to provide the maximum in user interface and ease of use while
providing capabilities powerful enough for the expert Z-8(assembly language
programmer.-

The text editing features. of the Editor Assembler facilitate the
manipulation of alphanumeric text files for both assembler source and
compiler source languages. The most common use of the editing capability is
in the creation and maintenance of assembly language source programs to be
assembled by EDAS. Through full support of upper and lower case text entry,
the Editor can serve as a line-oriented text processing tool.

The assembler portion of the Editor Assembler facilitates the
translation of Z-88 symbolic language source code programs into machine
executable code. This object code may then be executed directly from the DS
Ready prompt.

Although EDAS could be used as an entry-level assembler, the scope of
the documentation assumes a previous knowledge of assembler language and the
nexadecimal number system. This 1is not a “learning” manual - it details the
use of EDAS Version IV but in no way attempts to teach you how to program in
the Z-80 assembly language. You should have available a standard reference
handbook on the Z-8J code. Many texts are available.

The <A>ssemble command supports the assembler language specifications
set forth in the ZILOG "Z8@-ASSEMBLY LANGUAGE PROGRAM MANUAL", 3.9 D.S.,
REL.2.1, FEB 1977, with certain limitations.

. EDAS INTRO
1 -1

Introduction to EDAS VersionQIv

Nested MACROs are supported; however, MACROs must be defined
individually. »

Operand expressions may contain the “+¥, %0t Weu_ uwju_ % MOD.", "&" or
“_ AND.* (logical AND), *!™ or “.OR." (logical OR), ".XOR." {(logical XOR),
.NOT. (logical ones complement), .NE. and .EQ. (logical comparison, and *<*"
(shift) operators, and are evaluated on a strictly left to right basis.
Parentheses are not allowed!

Conditional assembly commands, where a programmer may control which
portions of the source code are assembled, are implemented with the
conditional pseudo-ops; IF, IFLT, IFEQ, IFGT, IFNE, IFLTS, IFEQ$, IFGTS
IFNES, IFDEF, IFNDEF, and IFREF. , K

Constants may be decimal (D), hexadecimal (H), octal (0) or (Q), bihary
(B), or string ('cc').

The Assembler commands supported are *LIST OFF, *LIST ON, *MODULE,
*PREFIX, *GET filespec, and *SEARCH library, as well as a range of listing
pseudo-ops (TITLE, SUBTTL, SPACE, PAGE, and constant declaraticns for bytes,
words, and strings).

A label can contain only alphanumeric characters and certain special

characters. A label can be up to 15 characters long. The first character must
be alphabetic (A-Z), the dollar sign ($) or the <AT> sign (). Subsequent
characters must be alphanumeric (A-Z, @-9) or selected special. characters -
<AT> sign (@), underline (_), question mark (?) or dollar sign ($). For
compatibility with MACRO-8@, a colon may be inserted immediately following
the symbol.

Two utilities are included with the EDAS application. XREF/CMD is used
to generate a full cross reference listing of symbol use. TTD/CMD is a tool
to convert EDTASM compatible source cassette files to EDAS source disk files.

NOTATION CONVENTIONS

Braces "*{}*

T LW O OB P D TD D O T e

Braces enclose optional information. The braces are never input in
Editor Assembler commands (Note: braces are used in C language source code).

Ellipses “..."

.............

The ellipses represents repetition of a previous item.

.~ - EDAS INTRO
i o-f

Introduction to EDAS Version IV

Line number “line"

“line" represents a number arbitrarily assigned to a statement for the
purpose of identifying it to the editor functions. “Line" can be any decimal
number ranging from <1 - 65529>.

Period *.*

A period may be used in place of any line number. It represents a
pointer to the current 1line of source code being assembled, printed, or
edited. It is termed the ‘“currént line pointer* throughout~; this
documentation. ~ ;

Top of Text " or “t*

The pound sign character,“#", or the letter "t", may be used in place of
any line number during a line number reference. It represents the beginning
or top of the text buffer. &

Bottom of Text “** or "p*

The asterisk character, “**, or the letter "b", may be used in place of
any line number during a line number reference. It represents the bottom of
the text buffer. ‘

Line Increment “inc*

This 1is a number representing an increment between successive line
numbers.

LOWER CASE ENTRY

Lower case is supported freely throughout EDAS for text and command
entry. All Editor Assembler commands may be entered in lower case as well as
upper case to facilitate its use as a general purpose text editor.

Assembler source code can be entered in upper case or lower case. For
lower case entry, the Editor must be in the case converted mode (see the
<S>witch case command). This mode automatically converts lower case entry to
upper case except for text which is between single quotes (enabling Tlower
case string constants) and for all text following a semicolon (permitting
lower case comments).

. EDAS INTRO
. L-3

~y

-

J\.J,

)

Running EDAS Version IV

EXECUTING EDAS

EDAS is a directly executable command file. It is accessed in response
to the D0S command prompt simply by entering:

EDAS (MEM=val,JCL,ABORT,LC,EXT="ext",Pn=val) I

|
I
} EDAS *
| WEM=v3al is used to protect a high memory region just 2
{ like you can in BASIC.
| JCL is used when running from Job Control Language
. so that EDAS uses the GKEYIN routine for its
keyboard input.
|

after an assembly with errors. It will return
| to DOS Ready.

LC is used when editing LC source files. It will
| set tabs to 4, default extension to "CCC“, and
invoke “lower case permitted®.

I

|

b

|

|

|

I

» :
ABORT if specified, EDAS will automatically abort }
|

|

|

|

I

l

|

|

|

[

| EXT=%"ext® provides a means by which the default source

; - file extension can be altered to "ext™.

| Pn=val can be used to pass symbol equates to the

| assembler from the command line. “n* can range

} from <1-4> permitting four symbol equates.

| = if specified, will reload EDAS and maintain

} the text buffer pointers.

’ Note: “val“ can be entered as parm=ddd or parm=X'hhhh'.

} There are no parameter abbreviations. 1

The parameters shown in parentheses are entirely optional. They are used
to alter the behavior of EDAS. Parameters enhance the utility of the Editor
?s??mbler by giving it greater flexibility. These options are used as

ollows:

This parameter 1is ‘used to protect a high region of memory from use by
EDAS. The region would usually be reserved for an in-memory assembly.

. RUKNING EDAS
2 -1

Running EDAS Version IV

If you do not enter a value, EDAS will recover the value stored at HIGH$
(address X'4@49' and X'4@4A' for the Model I or X'4411' and X'4412' for the
Model III) or use the value returned by the D0OS (for the Model II or LDOS
6.x) and use it for top of memory, maintaining its MEMTOP pointer to that
value. If ‘you do not wish to protect any memory from use by the Editor
Assembler, do not use this parameter.

You may protect a memory region similar to that which can be protected
from BASIC by entering a non-zero value. Enter an address value in decimal or
hexadecimal which 1is one byte less than the Tlowest address you want to
protect. Your entry must be greater than the start of the text buffer. At no
time will the Editor Assembler use memory higher than the entered value. Thi§¥
function is useful if you have placed a high memory driver or utility program
that ?oes not maintain HIGH$ and you want to avoid clobbering it. For
example: ‘ \

EDAS (MEM=X'DFFF*)

will restrict EDAS from using any address above X'DFFF'. Your in-memory
program can be assembled starting at address X'EQ@@'.

JCL (LDQS use only)

P e o O D D D D X P D €D D B W D D

EDAS uses an internal line input routine to enable the parsing of
certain characters. This hinders the ability of commanding EDAS from within
the Job Control Language (JCL) of LDOS. If you want to control the assembly
process from JCL, wuse the JCL parameter in the EDAS command line. If you are
going to <I>nsert text while in a JCL mode, then you must use the "X@l” to
simulate a <BREAK> 1in the JCL file. Don't forget, the “X@l" can only be used

if you are going to compile the JCL. For example, the following enters EDAS
and inserts one line:

edas (Jjel)

i

This is a test
%21 -

//stop

ABORT

. This parameter will cause EDAS to abort and return to DOS wupon an
assembly or disk error, or one of the following errors: no text in buffer,
line number too large, bad parameters, buffer full, no such line, *GET or
*SEARCH error, *SEARCH file not a PDS, PDS member error. . It is useful when

running from a Job Control Language to inhibit erroneous jobs from
continuing. :

.+ RUNNING EDAS
2 -2

Running EDAS Version IV

LC

This parameter is used when you are editing LC source files (C
language). It will do three things for you. LC changes the source file
default extension from “ASM" to "CCC" - "CCC" is used in the LC compiler. It
will change the tab stops from every eight columms to every four columms -
more reasonable for LC source code. The LC parameter will also invoke the
<S>witch case command to “lower case permitted" as LC source code is entered
primarily in lower case.

EXT=“ext® .

This parameter is available for those using the EDAS editor to edit and
maintain files other than EDAS assembler source files. For instance; the M-80
assembler uses "MAC" as the standard extension. FORTRAN uses “FOR". You may
be using EDAS to create or edit JCL files. Use this parameter to change the
default source file extension (that used with the <L>oad and <Write

commands) to one of your choice. You must enter a full three characters if
you use this parameter. For example:

EDAS (EXT="MAC")

specifies that "MAC" be used as the default extension (make sure the supplied
extension is entered in UPPER CASE).

Note that the override of “CCC" if. the LC parameter 1is used takes
precedence. If LC is specified, the EXT= parameter is ignored.

This parameter provides the power of entering symbol table equates
directly from the EDAS command line. "Pn*" is actually four parameters as “n*
can range from <1-4>. Thus, you specify the parameter as either P1, P2, P3,
or P4, These parameters are EDAS entry symbol table additions. By passing
parameter values with these on the EDAS command 1line, you can alter four
symbol table entries. Thus, you can use these to control EQUate options, pass
values to symbols, etc. The format usable is:

Pn sets @@n to TRUE.
Pn=ddd sets @@n to decimal value ddd.

| |
I I
I I
: |
| Pn=X'hhhh' sets @@n to hexadecimal value hhhh. |
| |

R R R R S S R R I e R I T S RS S I I S S SIS I ATIIIID

RUNNING: FRAS
2 -3

Running EDAS Version IV

The actual labels added to the symbol table as DEFLs are "@@n", where
"n* is the same as the “n" of "Pn". This is depicted as follows:

REARNSESSOIARSNEERENMECANERRBFREIEAST BRI OISR RNTRDII IR IR

| . ‘ I
i Pl == @1 P2 == @@2 P3 == @@3 P4 == Q@4 g

The four symbols initially have a value of zero (logical FALSE). You can
use these to externally set flags for use in conditional assembly (or
whatever else your heart desires). For example, say you have a program thg;
uses two conditional symbols, MOD1 and MOD3. If your program has the
statements:

MOD1 EQU eel
MOD3 EQU @e3

then an EDAS command line of EDAS (P1) will set "@@l" to TRUE, "0@3" was
defauited to FALSE, and thus “MOD1® would be TRUE and “MOD3® woulid be FALSE

since the two conditional symbols you are using are equated to the “@@n"
parameters.

You will find this parameter support a great feature when running EDAS
from JCL.

- e Kb D P . . ‘ . e

The “EDAS *" is used to re-enter EDAS keeping the source program and
variables intact. This permits you to recover after a re-boot providing the
Editor Assembler region is not disturbed or in case you inadvertantly entered
the ranch command without saving your source file. The region occupied by
the Editor Assembler is not normally disturbed by a RESET and boot of DOS.
Remember to hold the <ENTER> key depressed during the RESET operation if your
SYSTEM diskette contains an AUTO function.

EDAS COMMAND MODE

Once “EDAS" is entered, the following message will appear on the video
display screen:

MISOSYS EDAS-n.n

The "n.n" 1is indicative of the current version number. This display is
followed by a right caret “>* prompt. The prompting character is displayed
whenever EDAS 1is ready to accept a command. Detailed information on all
commands supported can be found in the chapter entitled, COMMANDS.

. RUNNING EDAS
2 -4

L

Assembly Language Information

SYNTAX

The basic format of an assembly language statement consists of up to
four fields of information. These fields, in order, are:

{LABEL} {OPCODE} {OPERAND{S}} {; COMMENT}

LABEL is a symbolic name assigned the address value
of the first byte of the object instruction.

Y
)

|
|
I
|
I
| OPCODE is the mnemonic of a specific Z-8J assembler
| instruction or pseudo-OPeration code.
I \
I
I
|
I
I
|
I

OPERANDS are arguments of the OPCODE.
s COMMENT is an informative notation that is ignored by

the assembler but aids in documenting the
source code. .

— — et S f— SO— — d—— — S — S— —— ————— ——

Note: Fields are separated by a tab or spaces.

As can be noted from the format box, none of the fields are required;
however, each line should contain at least one field. This may seem unusual
at first, but it 1is readily explained. If you want the comment field to
occupy the entire line, start the line with a semi-colon in the first
character position of the line - then, no other field is needed. A symbolic
label can exist by itself on a line. There are some Z-8@ operation codes that
have no arguments; thus, an OPCODE could exist by itself on a 1line (in field

SgéoYE“ will never have an argument by itself as an argument relates to an
DE.

The statement line is considered to be freely formatted. That means that
there are no columnar restrictions. Fields are separated by one or more tabs
or spaces. If a tab is used, it makes for neater listings. Tabs are also
retained as tabs and thus will keep source files smaller than using multiple
spaces.

Symbolic Labels

..... . - .-

A label is a symbolic name of a line of code. Labels are always
optional. A label is a string of characters no greater than 15 characters.
The first character must be a letter (A-Z) or one of the special characters,
“$" and "@". The "@“ as the first character of a label is useful for
highlighting certain labels since 1labels begining with "@* appear at the
beginning of an ascendingly sorted 1list (such as the symbol table listing or
cross-reference listing). The dollar sign is supported for easier adaptation
of M-80 source files. Actually, the "g" sorts out higher than "@"; however,

-
FY

1KFO - SYWisx
-

0

~ 'S

Assembly Language Information

it is recommended that you reserve use of "$" as the first character of
“local* labels. This can be very useful in light of the "-SL" assemble switch

A label may contain, within character positions 2-15, letters (A-Z),
decimal digits (#-9), or certain special characters: the <AT> sign, *@"; the
underline, " *; the question mark, "?"; or the dollar sign, “$". The dollar
sign “$*, appearing by itself, is reserved for the value of the reference
count$r of the current instruction. It cannot be used as a single character
symbol.

A symbol appearing by itself in the LABEL field of a line, will be
interpreted as being equated to the current value of the program counter.
Thus, the following two LABEL examples are completely equivalent: 3

ALLALONE
ALLALONE EQU $

Certain labels are reserved by the assembler for use in referring to
registers. Others are reserved for branching conditions (condition codes) and

may not be used for labels. (these conditions apply to status flags). The
following labels are reserved and may not be used for other purposes:

R R R S S R S NN S NS USSR TS ST RTATAIRISLBIRRTRIZIR

Rgserved Labels

—

Aa B: Ca Dv E: H, L: Io RO
IX, 1Y, SP, AF, BC, DE, HL
C, NC, Z, NZ, M, P, PE, PO
AND, EQ, MOD, NE, NOT, OFF, ON, OR, XOR

BHERUBRE RS RN IRAS RSN RN CET NS REICEEESNTIENEEERRTAT R B IR

Examples of labels:

B D QY 4D AW D W R GD T GRR GD R WD A GD G W

ENTRY @OPEN BUFFERS BYTE POINTER WHAT?
SELECT_CODE $SCORE e CARRTAGE_RETURN QEXIT
Opcodes .

The OPCODES for the EDAS Version IV Assembler correspond to those in the
Z-8@-ASSEMBLY LANGUAGE PROGRAMMING MANUAL, 3.0 D.S., REL 2.1, FEB 1977.

Operands

Operands are always one or two values separated by commas. Some
instructions may have no operands at all.

- INFO - SYNTAX
3 -2

-

\4

Assembly Language Informition

A value in parentheses "()" specifies indirect addresswng when used with
registers, or "contents of" otherwise.

Constants are data declarations of fixed value. They are constructed as

a sequence of one or more digits and an optional radix specification
character. The digits must be valid for the radix used. The following table
denntes aceptable constant composition:

REJEREBABEZITERVEZCL VLT BIRTIZBXRRB RS ERNLBBLUIERDERIRIVLREIZDEBAIBIBIIS

Data Dpe Radlx fhar Dgits o Tl . -
hexadecimal H <P-9,A=F> 1AH, @ABH, @FFH |
decimal - D <p-9> 1070, 107, 15384

| octal QorQ <B-7> 166Q, 1660
binary B <p-1> g11¢11108

| Note: Decimal is assumed if the radix character is omitted |

A constant not followed by one of the radix characters is assumed to be
decimal. A constant must begin with a decimal digit. Thus "FFH* 1is not
permitted, while "PFFH® is valid.

Operands may also be constructed as complicated expressions using the
mathematical and logical operators. Due to the extent of the documentation,
they are described in the section on "Expressions".

Comments

A1l comments must begin with a semicolon *;", If a source statement line
starts with a semicolon 1in the first character position of the line, the
entire line 1is a comment. If EDAS is in the lower case converted mode,
corments will be retained in whatever case they are entered. It is suggested
that comments be entered in lower case with punctuation as required. It will
make your source code listings much easier to read. All entry of text
following a semi-colon is maintained in its entered case.

THFO - SYRTAX
ERI

Assembly Language Information

EXPRESSIONS

A value of an operand may be .an expression consisting of multiple terms
(labels and data constants) connected with mathematical operators. These
expressions are evaluated in strictly LEFT to RIGHT order. No parentheses are
. allowed. EDAS does not support operator precedence. Most operators are
binary, which means that they require two arguments. Both “+" and “-" have
unary uses also. The following operators are supported:

B ERBEBIR SRS AR EARESE RN E TSN T AT T LRV AT RRARTIZIRAIRT RN

R R S S S N S R N R SRS RSN ETERARETBLINEERE B A

Addition (+)

OPERATOR FUNCTION EXAMPLE ”
+ Addition ALPHA + BETA
- Subtraction ALPHA - BETA
w Muitipiication ALPHA * BETA |
/ Division . ALPHA / BETA
| .M00. Modulo Division ALPHA .MOD. BETA™
< Shift Left or Right ALPHA < -BETA
«AND. or & Logical Bitwise AND ALPHA .AND. BETA
OR. or ! Logical Bitwise OR ~ ALPHA .OR. BETA
-XOR. Logical Exclusive OR ALPHA .XOR. BETA
.NOT. Logical 1's Complement FALSE EQU .NOT. TRUE
.NE. Logical Binary Not Equal ALPHA .NE. BETA
s Logical Binary Equal ALPHA .EQ. BETA |
% Length of MACRO %#LABEL or %% {
& MACRO Tabel concatenation #NAMEX&L i

The addition operator will add two constants and/or symbolic values.
When used as a unary operator, it simply echoes the value.

-7 INFQ - EXPRESSIORS
3 o~ 4

v

&x‘te, - .

Assembly Language Information

Po1E CON3@ EQU 30
polg CONl6 EQU +1@H
9003 CON3 EQU 3
gg2E A2 EQU CON3@+CON16
Subtraction (-) s

The minus operator will subtract two constants and/or symbo]ic values.
Unary minus produces a 2's complement.

POGE A2 EQU CON3@-CONl6
FFF2 A4 EQU -A2

B OB D D AP U D P D T T WS D - -

The multiplication operator will perform an integer multiplication of a
16-bit multiplicand by an 16-bit multiplier. Overflow of the resulting 1l6-bit
value is not flagged as an error.

PLED A5 EQU CON3@*CON16
BF20 A6 EQU 60009*3 ;this overflows

The division operator will perform an integer division of a 16-bit
dividend by an 8-bit divisor.

.........

pog2 A7 EQU 5/2
184D A8 EQU 48928/7

- INFO - EXPRESSIONS
3 -5

Assembly Language Information

Modulo (.MOD.)

’

The modulo operator calculates the remainder of the above integer
division.

gog1 A9 EQU 5.M0D.2
P0as AlQ EQU 48928.M00.7

"y

This operator can be used to shift a value left or right. The form is:

| |
| VALUE < {=}AMOUNT |

EREIBRBHFZBREUIVRENUBEEBREBRMELDIRERELAVBLURIVEBTBEBRURBBEITADELSR

If AMOUNT is positive, VALUE 1{s shifted 1left. If AMOUNT is negative,
VALUE is shifted right. The magnitude of the shift 1is determined from the
numeric value of AMOUNT. A good use of the SHIFT operator is to determine the
high order byte value of a 16-bit value.

gas57 HIORD EQU 5739H<-8
Coop Al EQU 3COPH<4
p3cy A2 EQU 3CP@H<-4
BBFF A3 EQU 3CBBH<8+255
03cn‘ A3 EQU 15+3CPPH<-4

The next higher page address in a program is easily calculated with:

CORE DEFL $<-8+1<8
ORG CORE

Logical AND (.AND. or &)

.......................

The logical AND operator bitwise ANDS two constants and/or symbolic
values. Each bit position of the l6-bit resu]tant value is a “1" only if both

. INFQ - EXPRESSIONS
26

»

Assembly Language Information
arguments have a "1* in the corresponding position, or a "g* if either
argument has a “@".

Examples:

3Cog Al EQU 3COBHEPFFH

gocg A2 EQU gals |

gdgg A3 EQU PAAAAH.AND.5555H
Logical OR (.OR. or !)

3

The logical OR. operator bitwise "ORS" two constants and/or symbolic
values. Each bit position of the 16-bit resultant value is a "l1" if either
argument . has a "1" in the corresponding position, or a "@" if neither
argument has a "1*.

Examples:

3CFF Al EQU 3CO@HIGFFH
GG9F A2 EQU @.0R.15
FFFF~ A3 EQU PAAAAH.OR.5555H

..................

The logical XOR operator performs a bitwise exclusive OR on two
constants and/or symbolic values. Each bit position of the 16-bit resultant
value is a “1" only if both arguments have reversed bits in the corresponding
position (i.e. one must have a "“1" while the other must have a "@“). The XOR
operation is considered a modulo two addition.

3CF8 Al EQuU 3CB7H.XOR.@FFH
'y A2 EQuU 8.X0R.15
FFFF A3 EQU @AAAAH. XOR . 5555H

This is a unary operator. It performs a one's complement on the term it
precedes. Observe the following examples:

- INFQ - EXPRESSIONS
3 -7

FFFE
FFFF

pood
Logical NOT-EQUAL (.NE.)

........................

Tl
12
T3

Assembly Language Informat;on

EQU

EQU
EQu

.NOTQI
cNOTcﬁ
NOT. -1

This operator is a binary operator that compares two adjacent terms. The
is TRUE if the terms are not equal. A FALSE result is
returned if the two terms are equal. Observe the following examples:

resultant value

0909
FFFF
FFFF
peen

Logical EQUAL (.EQ.)

Tl
T2
T3
T4

EQu
EQU
EQU
EQU

1008 .NE. 1000

1009 .NE.10 3
1.NE.-1

'NOT.E.NEC-I

This operator is a binary operator that compares two adjacent terms. The
resultant value is TRUE if the terms are equal. A FALSE result is returned if
the two terms are not equal. Observe the following examples:

FFFF
DS
0e0e
FFFF

71
T2
T3
T4

EQU
E0U
EQU
EQU

Macro Length Operator (%)

.........................

1096¢.EQ. 1406 '“
1000 .EQ. 18

I-EQb-i

ONOTOQlEQ. "1

The length operator is applicable only with MACRO usage. Therefore, its
use will be discussed in the chapter on MACRO PROCESSING.

INFO - EXPRESSIONS
3-8

Assembly Language Information

Z-8@ STATUS INDICATORS (FLAGS)

The flag registers (F and F') supply information to the user regarding

the status of the Z-8@ at any given time. The bit positions for each flag are
as follows: ‘

RUTI R VIR AT TEREITT TR BRI ILNEITTTZLATIRZILRNIIXBZRBTLTR N

) I
7 6 5 4 3 2 1 ¢ |

| S Z X H X P/N N C l
C is the Carry flag. Z is the Zero flag.

-y

N is the Add/Subtract flag. S is the Sign flag.

P/V is the Parity/Overflow flag. X is not used. |

|

|

| H is the Half-carry flag.

|

BRECEATIRILIZIT RIS TSZTIIVLIISAZIRNITZIZAZITRIIZTIZIITTZIIST T TTIIRRIN

Each of the two Z-80 flag registers contain six (6) bits of status

information which are set or reset by CPU operations. Four of these bits are
testable (C, P/V, Z, and S) for use with conditional Jjump, call, or return
instructions, Two flags (H, N) are not directly testable and are used by the
Z-80 internally to handle Binary Coded Decimal (BCD) arithmetic. Two flag
register bits (3, 5) are not used by the Z-88.

In the Z-80 mnemonic instruction set, the “CALL", “JP®, and "®JR"
instructions can contain a “condition code® which is part of the argument of
the OPCODE. The branching determination is performed according to the result
of the flag register testable bits. The mnemonics for these condition codes
are as follows:

i FLAG CONDITION SET CONDITION NOT SET i
} Carry c NC }
‘ . Zero z NZ ’
l Sign M (minus) - P (plus) {
E Parity PE (even) PO (odd) i

AR R R R R R R I I N I NIRRT TSI EIISSDS

INFO - FLAGS
. 3-9

Assembly Language Information

Carry Flag (C)

The carry flag 1is set or reset depending on the operation being
performed. For "ADD* instructions that generate a carry and “SUBTRACT"
instructions that generate a borrow, the carry flag will be set. The carry
flag is reset by an "ADD" that does not generate a carry and a “SUBTRACT"
that generates no borrow. This saved carry facilitates software routines for
extended precision arithmetic. Also, the "DAA" instruction will set the carry
flag if the conditions for making the decimal adjustment are met.

For instructions RLA, RRA, RLS, and RRS, the carry bit is used as a link
between the least significant bit (LSB) and most significant bit (MSB) for
any register or memory location. During instructions RLCA, RLC s and SLA s,
the carry contains the 1last value shifted out of Bit 7 of any register or
memory location. During instructions RRCA, RRC s, SRA s, and SRL s, the carry
gontains the last value shifted out of Bit @ of any register or memory

ocation.

For the logical instructions AND s, OR s, and XOR s, the carry flag will
be reset. The carry flag can also be set (SCF) or compiemented (CCF).

Add/Subtract Flag (N)

pa—

This flag 1s used by the decimal adjust accumulator instruction (DAA) to
distinguish between “ADD* and “SUBTRACT® 1instructions. For all “ADD*®
instructions, “N® will be set to a “zero". For all “SUBTRACT" instuctions,
"N* will be set to a “one®.

Parity/Overflow Flag (P/0)

This flag is .set to a particular state depending on the operation being
performed. For arithmetic operations, this flag indicates: an overflow
condition when the Accumulator result is greater than the maximum possible
number (+127) or is 1less than the minimum possible number (-128). The
overflow condition is determined by examining the sign bits of the operands.

For addition, operands with different signs will never cause overflow.

When adding operands with 1ike signs and the result has a different sign, the
overflow flag is set. For example:

+120 = 111 100¢ ADDEND
+195 = @119 1¢g1 AUGEND

+225 = 1110 $901 (-95) SUM

INFO - FLABS
. 3-16

Assembly Language Information

The two numbers added together have resulted in a number that exceeds +127

and the two positive operands have resulted in a negative number (-95) which
is incorrect. The overflow flag is therefore set.

For subtraction, overflow can occur for operands of unlike signs.
Operands of like sign will never cause overflow. For example:

+127 = P111 1111 - MINUEND
(-)-64 = 1100 0000 SUBTRAHEND

P A D D P T D W) W D S T S W G S S W T D S e o

+191 = 1011 1111 DIFFERENCE

The minuend sign has changed from a positive to a negative gjving an
incorrect difference. The overflow flag is therefore set. Another method for
predicting an overflow is to observe the carry -into and out of the sign bit.
If there is a carry in and no carry out, or if there is no carry in and a
carry out, then overflow has occurred.

This flag is used with logical operations and rotate instructions to
indicate the parity of the result. The number of “one" bits 1in a byte are
counted. If the total is odd, “0DD" parity (P=@) is flagged. If the total is
even, “EVEN" parity 1is flagged (P=1). When inputting a byte from an 1/0
device "IN r,(C)*, the flag will indicate the parity of the data.

During search instructions (CPI, CPIR, CPD, and CPDR) and block transfer
instructions. (LDI, LDIR, LDD, and LDDR), the P/V flag monitors the state of
the byte count register (BC), When decrementing the byte counter results in a
zero value, the flag is reset to zero, otherwise the flag is a one.

During “LD A,I"™ and “LD A,R" instructions, the P/V flag will be set with
the contents of the interrupt enable flip-flop (IFF2) for storage or testing.

The Half Carry Flag (H)

The half carry flag (H) will be set or reset depending on the carry and
borrow status between bits 3 and 4 of an 8-bit arithmetic operation. This
flag is used by the decimal adjust accumulator instruction (DAA) to correct
the result of a packed BCD add or subtract operation. The "H" flag will be
set (1) or reset (@) according to the following table:

H ADD SUBTRACT

| I
: :
| 1 There is a carry from There is no borrow |
| Bit 3 to Bit 4 from Bit 4 g
|

|] There is no carry There is a borrow |
} from Bit 3 to Bit 4 from Bit 4 =

INFO - FLAGS
‘ 3-11

Assenbly Language Information \

The Zero Flag (Z)

B D B OB €D TP UD € OB R SN Gk 4R A8 €D TH WD

The Zero flag (Z) is set or reset if thé result generated by the
execution of a certain instruction 1is a zero. For 8-bit arithmetic and

logical operations, the "Z" flag will be set to a "one" if the resulting byte
in the Accumulator is zero.

For compare (search) instructions, the “Z" flag will be set to a “one"
if a comparison is found between the value in the Accumulator and the memory
location pointed to by the contents of the register pair HL.

When testing a bit in a register or memory location, the "“Z" flag w111
contain the state of the indicated bit.

When inputing or outputing a byte between a memory location and an I/0
device (INI, IND, OUTI, ar OUTD), if the result of register B minus one (1)
is zero, the Z flag 1is set, otherwise it is reset. Also for byte inputs from

I/0 devices wusing "IN r,(C)%, the Z flag is set to 1indicate a zero byte
input.

The Sign Flag (S)

T Gl D D D S O D W AR D

The Sign flag (S) stores the state of the most significant bit of the
accumulator (Bit 7). When the Z-80@ performs arithmetic operations on signed
numbers, binary two's complement notation is used to represent and process
numeric information. A positive number is identified by a “zero" in bit 7. A
negative number 1{s identified by a ®one*. The binary equivalent of the
magnitude of a positive number is stored in bits @ to 6 for a total range of
from @ to 127. A negative number 1{s represented by the two's complement of

t?etequiéglent positive number. The total range for negative numbers is from
- Q = °

When 1inputing a byte from an I/0 device to a register, “IN r,(C)*, the
"S" flag will indicate either positive (S=f) or negative (S=1) data.

INFO - FLAGS
. 3-12

S

Assembly Language Pseudo-OP Codes

PSEUDO-QPS

There are many pseudo-OPs which EDAS will recognize. These assembler
operations, although written much 1like processor instructions, interface to
the ‘assembler instead of the Z-80 processor. They direct the assembler to
perform specific tasks during the assembly process but have no meaning to the
2-8J processor. Some of these pseudo-OPs generate data values used by your
program and are called “data declaration® pseudo-OPs. Others control pagin
operations and may be best termed, “listing" pseudo-OPs. A broad range o
operations to 1invoke the assembly of blocks of code based on conditional
evaluations are supported through many “conditional* pseudo-OPs. These
assembler pseudo-0Ps are: N

Constant Declarations |

|

|

| D8 specifies a data byte or string of bytes. Also

| equivalent to DEFB, DEFM, and DM. |
i :

| DC specifies a multiple of byte constants. |
|

| DS reserves a region of storage for program use.

| Equivalent to DEFS.

| ,

| DuW specifies a word (16-bit data value) or a

{ sequence of words. Also equivalent to DEFW.
'.'.;;..ﬂI.ICU’U".S’ﬂ‘I’IS"383.8".3388!8;‘388.8:!'3‘38'83'33

Origins and Values

DEFL © establishes a value for a label which can
be altered during the assembly.

END signifies the end of a *GET or *SEARCH member.
Wi1l indicate the end of the assembly when
detected in the text buffer. Supplies the
execution transfer address.

EQU estalishes a constant value for a label. |

LORG " establishes a load origin for executable
object code files.

I I

ORG establishes an execution origin for executable
‘object code files or in-memory assemblies.

. PSEUDO-0PS i GENERAL
) 4 -

Assembly Language Pseudo-0P Codes

BRSNS ERT IS ES S LTSI TTITIIINRARTEAIRR

IF
IFEQ($)
IFLT($)
| IFET{S}
IFNE(S)
IFDEF

!
I
l
I
I

IFNDEF

IFREF

ELSE

I
} ENDIF
I

Note: “{$)}" denotes alternate macro string comparison.

Conditionals o
conditional evaluation of expression. |
logically TRUE if expressionl = expression2. |
logically TRUE if expressionl < expression2.
logically TRUE if expressionl > expression2. |
logically TRUE if expressionl <> expression2.

logically TRUE if “label" has been defined
prior to this statement, else FALSE.

logically TRUE if “1abel” has not been defined
prior to the statement, else FALSE.

logically TRUE if "label* has been referenced
?utsgot defined prior to the statement, else
"ALSE.

alternate clause to be assembled if the prior
clause has evaluated TRUE.

|
I
|
[
I
I
|
I
|
signifies the end of a conditional block. !
[

| con
| oow
| e
MACRO
PAGE
| SPACE

SUBTTL
TITLE

Miscellaneous
generates an object code file comment record.
designates the end of a MACRO model.

forces an assembly error.

I
I
!
I
I
|
desigantes the prototype of a MACRO model. |
I
transmits a form feed during a listing. |
» |

generates extra line feeds during a listing. |
|

invokes a heading sub-title for listings. |
|

I

invokes a heading title for listings. .

8"'8‘83‘88&3883‘“83338383888883888388333888888383333a838823888

PSEUDQ-0PS

.
-

~y

D)

w:g
X

Assembly Language Pseudo-OP Codes

PSEUDO-OP DB

BEXTJTISRREIIS

The *DB* pseudo-OP is used to define a data byte or series of bytes. Its
syntax is:

ERTERREERBATEAZIXZARIRELRIZILTI TR RETIXZIIRIITTITAZEITRIEIRTLEIIREEZRRI N

|

} D8 n{,n}{,'c'}{,s}{,expression}

n ' defines the contents of a byte at the current
reference counter to be “n*.

——————

' defines the content of one byte of memory to
" be the ASCII representation of character “c".

|
|
'st defines the contents of n bytes of memory to |
be the ASCII representation of string “s", |

| where "n" is the length of “s" and must be in |
the range 1-63. }

I

|

|

| expression 1is a mathematical expression which evaluates
} to a number in the range <p-255>.

The constant declaration ®DB* permits the concatenation of its data
arguments using the comma ", as an argument separator. Data values are
?egotedT?ccording to the specifications in the chapter on ASSEMBLY LANGUAGE

NFORMATION. :

In order to provide compatibility with constant declarations of other
assemblers, EDAS provides other data declarations that are completely
equivalent to "DB". The following pseudo-OPs can be used in lieu of "DB“: DM,
DEFB, DEFM. Because DB, DEFB, DM, and DEFM are exact equivalents and all four
are supplied only for ease of transition from other assemblers, each must be
contained in the QP-code table used by EDAS. However, only “DB" was selected
to be high up in the OP-code table. Since the OP-code table 1is searched
sequentially, the use of “DB" in your source code will produce a slightly
faster assembly than use of DEFB, DEFM, or DM.

“0B* string arguments permit two connected single-quotes to indicate a
single-quote value PROVIDED that two or more characters precede the 2-quote
appearance in the string. For example:

DB IABIIC|

will produce the character string: 41 42 27 43. This may have been coded as a
complex declaration such as, “'AB',27H,'C'", but the extensive declaration
support in EDAS provides the easier specification.

« PSEUDO-OPS - DATA DECLARATIONS
4 - 3

4

Assembly Language Pseudo-0P Codes

The following partial assembler listing demonstrates the versatility of
the expanded constant declarations.)

Poeg 54 00870 DB ‘This',' *,*is",' *,'a',"' ', 'test’
68 69 73 20 69 73 20 61
.28 74 65 73 74 .
PPgE p1 popse DB 1,2,'buckle your shoe',3,4,'close the door’
P2 62 75 63 6B 6C 65 20
79 6F 75 72 20 73 68 6F
65 93 P4 63 6C 6F 73 65
;g 74 68 65 20 64 6F 6F

P039 54 peg90 DB ‘This is a tes','t'!8PH ~
68 69 73 2¢ 69 73 2¢ 61
200 74 65 73 F4
In the last example, note the expression argument specified as,
"t'180H
Much more complicated expressions could be utilized.
The expansions of the constant (the rows of eight bytes per row) will

appear in listings. The expansions may be suppressed from your_ listings by
using the assembler switch, =NE.

PSEUDQ-0PS - DATA DECLARATIONS
. 4 - 4 ’

Assembly Language Pseudo-0P Codes

PSEUDO-0P DC

This pseudo-0P defines a repetitive constant. Its syntax is:

DC quantity,value

| quantity specifies how many times that “value* is to be
repeated as a data byte. It can be defined as
any other data definition: n, expression, ‘c'.

~y
I

data declaration, the value can be specified
.as a character, 'c’', a numeric value, n, or an
| expression evaluated to a number in the

range <p-255>.

|
|
|
|
|
|
value is the constant to be repeated. As in a “DB* {
I
l
|
|

BRDVIXZJRBBIIXITRIZITITRATIBATTAXRISITITAIDEIIIZITIRNISSRIIIRITIZTRRII

- The pseudo-0P, "DC*, will define a repetitive constant and eliminate the
necessity of defining a series of identical data values by long DB
specifications. For example, the following two statements are equivalent:

DB 9,8,0,0,9,9,0,0,0,0,0,0,0,0,0,0
DC 16,8

The latter is much shorter, easier to enter as text, more readable, and takes
up less space in its source form.

The "“quantity" must range from 1 to 65535 (a zero value will result in
65536). The “value" must be less than 256. With this pseudo-OP, you can
generate repetitions of a single constant. For example, say you want to set

199 storage locations to a zero value during the assembly. Insert the
statement,

0C 100,90

and it will be done. A character constant can also be used for “value* as
11lustrated in the following example:

DC 256,'A’
which will set the next 256 storage locations to the letter, "A",
The expansions of the constant will appear in listings just as they do

in the DB expansion. The expansions may be suppressed from your listings by
using the assembler switch, -NE. "

.* PSEUDO-0PS - DATA DECLARATIONS
4 -5

Assembly Language Pseudo-OP Codes

PSEUDO-0P DS

This pseudo-0P is used to reserve a quantity of storage Jlocations for
use by your program. lts syntax is:

saasaa:nuas:aannzan:siaa:sssaacssaaza:azasaasanansaaz:a:sazsau:

| |
} DS nn %
| nn reserves “nn" bytes of memory starting at the |
= current value of the reference counter. }
f“
BN RSB S E B RNUEREI BT BERLCITTIIIIBIEREI LB TR '

The DS pseudo-OP can also be entered as “"DEFS" in order to provide a
compatibility with other assemblers that use only YDEFS® to reserve storage

locations. For reasons of efficiency as discussed earlier, use of the "DS" in
lieu of the "DEFS" will result in slightly faster assemblies. Therefore, it

is suggested that if you are transfering over to EDAS from another assembler,
globally change all “"DEFS" pseudo-QPs to “DS".

The quantity, "nn®, can be a data value or an expression. Note that “DS"
does not define data values. The “DS" pseudo~OP adds the quantity of storage
locations reserved to the current program counter (PC) to calculate a new PC
value. When generating an object code file, this action will cause the next
assembled byte to create a new load record. The following examples depict
various "DS" declarations. ,

Examples of the DS pseudo-0P

FCB DS 32

will define a 32-byte region for later use as a File Control Block.
Its origin can then be referenced as “FCB".

TABLE DS TABLE_LENGTH * TABLE_WIDTH

will reserve a quantity of storage locations equal to the result of
multiplying the two terms, TABLE_LENGTH and TABLE_WIDTH.

If your source code 1is being assembled with the “~CI* switch, EDAS
automatically converts all “DS* declarations into equivalent *DC“
declarations using a value equal to zero. The above two examples would
therefore be translated to the following:

FCB DC 32,9
TABLE DC TABLE_LENGTH * TABLE_WIDTH,@

PSEUDO-OPS - DATA DECLARATIONS
‘ 4 -6

Assembly Language Pseudo-OP Codes

PSEUDO-OP DW

EBRBRMBRIBTRBE

This declaration specifies a 16-bit data value. Its syntax is:

| |
DW nn{,‘'cc'}{,nn}

nn defines the contents of a 2-byte word to be
the value, “nn". ~y
‘ec! defines the contents of a 2-byte word to be |

the characters, ‘cc!

The DW pseudo-0P can also be entered as "DEFW" 1in order to provide a
compatibility with other assemblers that use only “DEFW" to declare data
words. For reasons of efficiency as discussed earlier, use of the "DW" in
11eu of the *DEFW* will result in slightly faster assemblies. Therefore, it
1s suggested that if you are transfering over to EDAS from another assembler,
globally change all “DEFW" pseudo-OPs to "“DW".

In the expansion of the data word, its least significant byte is located
at the current program reference counter while the most significant byte is
located at the reference counter plus one. The data word can be a numeric
constant, an expression that evaluates to a 16-bit value, or a character
constant of one or two characters. The following examples illustrate various
forms of "DW* data declarations.

0000 1927 pPlpe DW 19999,1008,100,10,1
EBD3 6400 DADP 0100

PP9A 6261 ppPLlg OW ‘ab'

9O0C 5200 99126 DW 'R','0','y’
6E0P 7909

Note that if a single character is defined as a character constant word, the

low-order byte of the word will contain the character value and the
high-order byte of the word will be set to zero.

PREURO-0PS - DATA DECLARATIONS
& ¥

Assembly Language Pseudo-OP Codes

PSEUDO-0P DEFL

BEBRIABREEIBLER

The “DEFL" pseudé»OP assigns a value to a label. The value is permitted
to be changed during the assembly. The "DEFL" syntax is:

|
label DEFL nn

label DEFL expression
nn sets the value of “labeT™ to the quantity “nn*

expression sets the value of “"label® to the evaluated

~y
result of "expression®.

|
|
|
I
I
I
I
l
|
uauaaauuucnsnsamanszzaaasasannuasatus:aaa:aaaf::s:ssuan-aauss:u

This declaration is similar to the “EQU" declaration except that the
label value 1s permitted to change during the course of the assembly without
producing phase errors (which are generally observed as numerous MULTIPLY
DEFINED SYMBOL errors). If the value of "label" 1is declared by a "DEFL", the
declaration can be repeated in the program with different values for the same
label. One useful purpose to support this method of coding would be to
similate the maintenance of two program reference counters.” Observe the
following sequence of code:

veo SOME code

PROG$ DEFL $; Save current program counter
ORG DATAS ; Set PC to data counter
MSG1 DB 'This is a test message',CR

DATAS DEFL $ Save current data counter
ORG PROGS ; Reset PC to program counter
... More code '

PROGE DEFL $

Save current program counter

ORG DATAS Now set PC to the data counter
MSG2 D8 'Another message',LF,CR
DATAS DEFL $; Save new current data counter
: . ORG PROGS ; then re-establish PC

... continuation of program code

The program maintains two address counters. One is utilized as a counter to
keep track of the code portion of the program (PROGS), while the other is
used to keep track of the data portion of the program (DATA$). This technique
can be used to keep the data fields associated with routines in close
proximity to their associated routine 1in the source code, while the object
code location of the data is collected into some other region.

Labels defined as “DEFL® will be carried as "DEFL® 1in the EQUate file
generation of the Cross-Reference utility. They will also be notated in the
cross-reference listing by a plus sign, "+", prefix to the label name.

PSEUUU-0PS - ORIGINS and VALUES
- 4-8

*

Assesbly Language Pseudo-OP Codes

PSEUDO-0P END

The "END* pseudo 1is used to denote the exit of a *GET or *SEARCH
process, or when used 1in the memory text buffer, it will denote the end of
the source code. Its syntax is: ')

END {nn}
END {label}

N signifies the end of the source program (see
text for handling during *GET and *SEARCH). ‘"*’
| nn specifies an execution transfer address branch
that will be used by the system loader.

label specifies an execution transfer address bfanch
to be the value of "label".

The “END™ statement is used to indicate to the assembler, when the last
source code statement 1{s reached so that any following statements are
ignored. If . no ™“END* statement is found, a warning 1is produced. The END
statement can specify a transfer address (i.e. END LABEL or END 6@9@H). The
transfer address is used by the DOS program execution to transfer control to
the address specified in the END statement. Note that the END statement
cannot have a label in the:label.field..of. thei/statement).

The “END* statement is treated differently if detected while assembling -~

a file that was the target of a “*GET filespec" or "*SEARCH library*. In the
case of the *GET, the "END" is treated as if the end-of-file was reached and
EDAS will switch back to assemble from what ever invoked the *GET. A similar
process takes place with the *SEARCH, except that EDAS continues the
searching process in its normal manner.

PSEUDO-0PS - ORIGINS and VALUES
4,‘ 4-9

' Assembly Language Pseudo-0P Codes

PSEUDO-0P EQU

This pseudo-OP assigns a constant value to a label. Its syntax is:

SRR ECLNBITIUSECT AT LRI T[T S RS TV CASTBTEIBIUISIZITERBER
. .

label EQU nn
label EQU expression

nn sets the value of label to nn.

expression sets the value of label to the calculated

~y
value of “expression®

BRABRSERE R EECESENRAVERIRITREEDC LRSS RSB LTEBERTEBIIDRI BB IBITIIB

The "EQU"* (equate) pseudo-OP 1is the generally accepted way to define
constant values for use in your program. This declaration serves a different
purpose than the the data declarations such as DB, DC, and DW. Data
declarations specify storage locations that contain the values declared. The
“EQU" assigns the value to the label; thus, anywhere the label is used, the
assigned value is utilized. Your programs will be more readable, and easier
to maintain if the values need to be altered 1in a program revision. For
instance, the first starting address of a video memory area might be X'3CPQ°
or 1536@. If your program had a routine to blank out this video area, it
could be written as <A>: ‘

CLEAR LD HL,15360 CLEAR LD HL, SCREEN
L0 DE, 15360+1 LD DE, SCREEN+1
LD (HL),* ' <A or LD HL,'
LD BC, 1p23 LD BC,CRTLEN-1
LDIR LDIR
RET RET

If you had established labels for the video screen with: “SCREEN EQU 1536@"
and “CRTLEN EQU 1@24*, then the above routine could be re-written as in
which not only makes it more readable, but when you revise your program for
one that has video memory at a different address, all you need do is change
the value of one “EQU® statement.

It is alsoc useful to establish a series of equates for system vectors

that are to be used in your program. Don't code a statement as *CALL 4424H%;
establish a label such as “@OPEN EQU 4424H*, then your CALL statement is
coded as “CALL POPEN", certainly much more readable.

An "EQU® can occur only once for any label. A multiple "“EQU" with
different values will result in the MULTIPLY DEFINED SYMBOL error.

PSEUDO-OPS - ORIGINS and VALUES
y 4 - 19

‘Assembly Language Pseudo-OP Codes

PSEUDO-0P LORG

The “LORG" pseudo-OP is used to establish an object code file (or part
of one) that 1loads at an address different from where it will execute. The
syntax of “LORG" is:

| |
| LORG nn |

LORG expression L

| nn is the address to start loading the object |v
file (or part of the file). {

expression when evaluated, “expression® will be treated |-
the same as "nn”, {

A load-origin assembler ‘directive, "LORG", is provided to cause the load
addresses of the object file to be based on the LORG operand while the
execution code address references will still be based on the "ORG" operand.
This is wuseful to construct a module (or part of a module) that will load at
an address different from its execution address. For example:

ORG 520@H
- LORG 700@H

will assemble code so that absolute address references and the execution
addresses are referenced from X'5200'; however, the object code file will
start loading at X'700@'. Any subsequent "ORG" will maintain the offset
difference established at the previous “ORG* wuntil another “LORG* 1is
detected.

Why incorporate such a facility into the assembler? How can I make use
of it in my programs? - Easy answer! Consider this scenario. A program is
composed of three large modules, A, B, and C. Module “A" performs
initialization, has “run-time" routines, and determines whether module *B* or
"C* is to be executed. Consider further, that once either module “B* or “C*
execute, the program terminates. If we assemble all three modules so that
they are contiguous to each other, their execution take up more space than is
actually needed. If we need to maximize the amount of memory available for,
data storage, buffers, and stack, we could use an “LORG* to have module *C"
load after module "B, but “ORG" module “C" so that it executes where module
“B" executes. When module "A" determines that it needs to execute module *C",
it can move the entire module in memory to "B's" position easily with an LDIR
125truction. This will free up memory which can be used for the needed
storage.

+ PSEUDQ-OPS - ORIGIMS and VALUES
4 - 11

Assembly Language Pseudo-0P Codes

PSEUDO-0P ORG

The "“ORG* pseudo-QP is wused to establish an address for the program
counter so that the absolute address references within a. program are
designated. The syntax of "ORG® is:

ORG nn
| ORG expression |

nn sets the address reference counter to the ~y
| value “nn*, |

expression when evaluated, “expression" will be treated
| the same as "nn*. Terms of “expression® must |
be defined prior to the "ORG" statement.

EERRRARBRZIRRERRAR BRI TEERRNBIRARNIINFTERIITAXRRZIRSIITNISSRITIZIRNIED
.

The "0RG" statement is used to tell the assembler at what address to
begin generating the object code for statements which follow. The assembler
will generate cbject code starting at the address specified "by "nn" or
“expression”, automatically advancing the program counter by the length of
each instruction or data declaration assembled. The "DS“ data declaration
advances the program counter by the amount of storage locations reserved.

A program can have more than one “ORG* statement. If mulfip]e “ORGs" are

used, and one or more inadvertantly will cause the overwrite of a previously
assembled module of code, no warning message of any kind will be issued. It

is left up to the programmer, to protect against such events by use of
conditional tests (using conditional pseudo-OPs) and the “ERR" pseudo-QP.

The ORG pseudo-0P causes no code generation itself but just prepares the
assembly process to start a new object deck record with the generation of
subsequent object code (note that if the evaluated address is one greater
than the current PC, a new object deck record will not be started). :

PSEUDO-0PS - gRIGINS and VALUES
- 12

o

Assembly Language Pseudo-OP Codes

CONDITIONAL PSEUDO-OPS

ERTRTTRISSITTIT TSRS

~The "“conditional" pseudo-OPs provide a powerful way to maintain a
program that is slightly different when assembled to execute on different
machine configurations. Instead of having to maintain multiple copies of a
program, with each copy having some routines and modifications to make a
“custom" version of the program, by using the conditional pseudo-OPs, you can
maintain one set of source code that has conditional segments (or blocks) of
code that perform the “customization. It is very easy to specify which
segments are to be assembled during a particular assembly. The structure of a
conditional block is as follows:

~7
IIB,8!!'88.8838'8888388888883388';838I,BI8.83333'!88“-38888833‘3
|
IFxx argument of IF

I
}
I code block or segment
l .
} ENDIF

T T e T P P P P P T T T T L PP T T P T TP Y

The argument of the “IF® takes on different formats depending on the
particular “IF* pseudo-OP. It can be an expression, a label, or two
expressions separated by commas. More on this later; for now, just refer to
it as the argument. If the argument is evaluated to a non-zero value, it is
interpreted as a logical TRUE condition. If the argument 1is evaluated to a
zero value, it 1is interpreted as a logical FALSE condition. When the
condition is TRUE, the conditional segment between the “IF" and the “ENDIF"
is assembled. If *“expression" 1is evaluated to a zero value then the
conditional block is not assembled but just listed (during the listing pass).
For the sake of uniformity, use the value of "-1" for a logical TRUE and a
“@" for a logical false so that, “FALSE EQU .NOT.TRUE" is a valid statment.
These can be set as equates in the beginning of a program as follows:

TRUE EQu -1

FALSE EQU @ oo e
MODl EQU TRUE a

MOD2 EQU FALSE

MOD3 EQU FALSE

BE CAUTIOUS WHERE THE OPERANDS OF THE CONDITIONAL ARE NOT DEFINED PRIOR
TO THE "IF". THE CONDITIONAL BLOCK WILL MOST LIKELY EVALUATE “FALSE"™ ON PASS
1 AND “TRUE"™ ON PASS 2 OR 3.

Consider a program designed for execution on the Model's I, II, or III
"computer with different versions for each. The code blocks particular to a
Model may be included in one set of source files but established as
conditional blocks. For example:

. PSEUDO-OPS - CONDITIONALS
‘ 4 - 13

Assembly Language Pseudo-0P Codes

{F MODL IMOD3

block of code for Model I or Model III
ENDIF

IF MOD2

block of code for Model II

ENDIF

and all that is ﬁeccessary to invoke a “custom® assembly is to set one of the
conditional “switches® to TRUE and the others, FALSE.

Conditional segments can also be nested, in case complicated logical
constructs are needed or in case a conditional segment itself has a
conditional sub-segment. For example: o

IF expressionl
IF expression2
ENDIF

ENDIF

1s a two-level conditional. Conditional segments can be nested to sixteen
(16) levels although you will rarely find a need for more than three.

The conditional construct of IF-ELSE~ENDIF may be used. It is coded as
follows: -

IF expression
code block 1.
ELSE

code block 2.
ENDIF

which feplies that 1f ‘“expression® {s TRUE, code &slock 1 assembles. If
“eapression® s FALSE, then code block 2 will be essembled. The FELSE
construct is not required in. a conditional but may be used where you have two
alternative segments that can be based on one switch. For instance, if your

program has only two “switches“, GO and NOGO, your constructs could be either
of the following: ‘

IF G0 IF 60
code block 1 code block 1
ERDIF ELSE

IF NOGO code block 2°
code block 2 ENDIF

ENDIF '

PSEUDO-0PS - CONDITIONALS

BT SR T SR)

Assembly Language Pseudo-OP Codes

As mentioned earlier, the IF argument can take one of three forms. The
conditional structures. of these are as follows:

I

|

| ==<Type Ie== cmeeaType [l=ecwcea --Type Ill--

| IF exp IFxx{$} expl,exp2 IFyy label |
l . . - . :
{ code segment code segment code segment

} ENDIF ENDIF ENDIF

| “xx® can be “LT*, “EQ“, or “GT" representing less I,?
| than, equal to, or greater than conditions |
{_ respectively when comparing “expl" to “exp2“.

| {8} The “$" is specified in macro comparisons with |
| the expressions treated as strings (see the |
| chapter on MACRO PROCCESSING). {
I ,

| *yy® can be "DEF", "NDEF", or “REF" representing |
| whether “label" has been defined, undefined, |
| or referenced but undefined. {
I

Type II - IFxx

The Type I constructs have already been explained in detail. Among the
Type II constructs, using "“IFLT*, if the value of expression 1 is less than
the value of expression 2, then the conditional code segment will be
assembled. Using “IFEQ“, the conditional code segment will bé assembled only
if expression 1 and expression 2 have equal values. The "IFGT" pseudo-OP will
assemble the conditional code segment (i.e. result in a TRUE condition) only
if expression 1 has a value exceeding that of expression 2. The last
possibility is “IFNE“, which will cause the assembly of the conditional
segment if the expressions are not of equal value.

If, for instance, you want to ensure that a program does not assemble
code past a particular address (maybe it would clobber another routine), then
the ERR pseudo-op could be used in conjunction with IFGT to force an assembly
error as follows: .

IFGT $,MAXADDRESS
ERR Program is too long!
ENDIF

which compares the current value of the program counter (PC) to some
previously specified maximum address. Once the PC exceeds this maximum value,
the condition evaluates TRUE resulting 1in an assembly of the segment. The
"ERR* pseudo-OP 1is used to force an assembly error.

. PSEUDO-OPS - CONDITIONALS
. 4 - 15

Assembly Language Pseudo-0P Codes

Type III - IFyy

Among the Type III constructs, “IFDEF LABEL" will evaluate TRUE if
“LABEL" has been defined prior to the evaluation of the IFDEF on each
assembler pass. "IFNDEF LABEL" will evaluate TRUE if *"LABEL" has NOT been
defined prior to the evaluation of the IFNDEF on each assembler pass. "IFREF
LABEL" will evaluate TRUE if “LABEL" has been referenced but NOT defined

prior to the evaluation of the IFREF on each assembler pass.

The Type III constructs will find greater use when working with
libraries of code. For instance, if a code segment is a specific routine and
is surrounded with an IFREF-ENDIF conditional, the routine will only be
assembled 17 prior to the segment, the “label® haes heen referenced but not’
yet defined. [“label® 135 ihe entry noint symbol o the roubtineg, then the
routine will be assembled if it is needed. In a similar manner, you may have
a library routine that 1is always to be placed in your program unless its
“label" has already been defined in some alternate routine. Surrounding it
with the IFDEF-ENDIF conditional will inhibit its assembly if your program
has defined that label.

Suppressing FALSE Conditionals

aaaaaa R D A G GO T N T R A G OB RS S A W D O KD

If during the listing pass, you want to suppress the 11st1;g of certain
conditional segments that are not assembled (i.e. they are evaluated as
FALSE), use the following sequence of operators: ’

*_IST OFF

IF expression
* IST ON

code segment
*IST OFF

ENDIF

*LIST ON

With this sequence, the “IF" and “ENDIF" lines will always be suppressed. The
conditional block will only:be:listed«if the' condition beiing evaluated is
logically TRUE. If all ‘FALSE conditional ségments are not<to be listed ' theén
you may use the assembler "-NC" switch which inhibits the 1listing of all
FALSE conditionals - including the IF-ENDIF statements.

yery little has been said about the “ENDIF* statement. Very little need
be said. Each "IF" statement must be matched up with a corresponding "ENDIF".
The “ENDIF* is needed to define the scope of the conditional code block. “

PSEUDG~0P54- ﬂ?ﬁﬂl?ﬁﬁ%ﬂLS

2

"~ Assembly Language Pseudo-OP Codes

PSEUDO-OP COM

. This pseudo-0P is used to generate a comment record in the object code
file. Its syntax is:

COM <string>

<string> is the information to be placed as a comment.

|
l
|
|
l

BERETESEARI SRS I LIRSS RABLEBETIXXARBEATTABIRIZRIATISIUITITERERT BRI N
Vs

7

; An object deck comment block can be generated within the executable

object code file directly by using the “COM" pseudo-OP. The comment string
must have a length less than 128 characters. As can be noted, the comment
string must be enclosed in angle brackets. The closing bracket may be
omitted. If lower case characters are desired, then single quotes must

surround the angle brackets. Neither the quotes nor the angle brackets will
be a part of the comment record.

The “COM" pseudo-OP will generate a comment block in the object file of
the format X'lF' followed by the string length, followed by the string
itself. A typical use would be to place a non-loading copyright statement in
an executable object code file. For example:

COM_ '<Copyright (c) 1982 by Roy Soltoff>'

will produce the comment record which would be viewed if the file were
listed. '

The generation of - the “COM" object code record will be inhibited if the
assembly is performed using the "~CI" switch. A binary core-image file can
not have a non-loadable record.

PSEUDO-OP ERR

The *ERR* pseudo-OP is used to force an assembly error. Its syntax is:

BRARTTRBAITERIZTTIAZETE IR ELRITIRTTSITTIUSAISE TSI IRITRNIZIARSBIRISE

|
{ ERR {message} }
| message is an optional message to inform what is wrong. |
I

R S I I N I S S eSS SNSRI SIS SIS ST ORISR IR

This pseudo-0P forces an immediate warning error and displays the
optional message. It is commonly used in a conditional block for error
trapping.

. Miscellaneous Pseudo-OPs
‘ 4 - 17

Assembly Language Pseudo-OP Codes

PSEUDO-0P HACRO

EEVRRBDSBEATRRBES

The MACRO pseudo-OP 1s used to define the prototype of a MACRO model.
Its syntax is: ’

RS R R R R N RSN RS SIS SRS IR RTETLIREATIZIRNIER

| mname MACRO ({#parml}{=dfi1tl}{,#parm2{=dfit2}}{,...}

|
N ame is the MACRO name used to refer to the MACRO

|
|
}
| #parmm are dummy parameters of the MACRO which will be |
| replaced by actual parameters during the MACRO | ~
invocation. {
| dfitn are optional defaults to be used for the dummy |
parameters when a parameter is not provided in |
the MACRO invocation. {

RN S R NSNS SIS ARSI RITARNIBTBIITIIIIIITIIIIER

MACROs are an extremely powerful tool in an assembler. It provides great
convenience in writing programs in building block form. For this reason, an
entire chapter has been devoted to MACROs. You should refer to “"the chapter
entitled, MACRO PROCESSING, for information concerning the use of MACROs.

Suffice it to say here that MACRO invocations can be nested to eight levels,- .

parameters may be passed by position or by keyword, and a special operator is
available to test the length of parameter substitutions.

PSEUDO-0P ENDM

BREIABAVIVBRBRR

This pseudo-OP is used to specify the scope of a MACRO model. It is used
much like the “ENDIF*. Its syntax is:

B R Y Y T P P P T PP P P P P T Ty T

I .

| mname MACRO parms : |

| model statements |

| ENDM |
|

ERGTACRBEE R R R ER T TSRS EITI IR BT ELI TSRS

¥iiscelianeous Pseudo-(UpPs
. 4 - 18 “

*

Assembly Language Pseudo-OP Codes

LISTING PSEUDO-0PS

FETRTTERTTIIIRIITER

Four pseudo-OPs are available to control the assembler listings. These
are: PAGE, SPACE, SUBTTL, and TITLE. Their syntax is:

PAGE {OFF}
SPACE n

k3
=)

SUBTTL {<string>}
TITLE <string>

OFF is an optional parameter for PAGE te suppress
the 1isting of the PAGE statement.

n specifies how many line feeds to generate.

<{string> is the title or sub-title string to appear in
the 1isting headings.

A new page can be forced to provide separation of routines, modules,
etc. by using the "PAGE" pseudo-op. This pseudo-OP will be ignored if it
appears between *LIST OFF and *LIST ON. “PAGE" accepts an operand of "OFF" to
suppress the listing of the line containing the PAGE pseudo-OP (i.e. "PAGE
OFF" will 1issue the form feed but suppress printing of the line containing
the "PAGE" pseudo-QP).

“SPACE n* performs 1line spacing whenever the "“SPACE" pseudo-OP is used.
When assembled, “n* is the number of 1lines to space and is interpreted as
modulo 256. The line containing the SPACE pseudo-op is not displayed. This
pseudo-op also will be ignored if it appears between *LIST OFF and *LIST ON.

A sub~title to a heading is permitted with the “SUBTTL® pseudo-OP. The

subtitle string length can be from zero (@) to 8@ characters in length. A
zero length indicates that sub-titling is disengaged.

Lower case strings can be maintained by the use of single quotes.
surrounding the angle brackets. You may change the subtitle by using
additional "SUBTTL" pseudo-OPs throughout the text. Subtitles will appear on
the first page following the "SUBTTL" pseudo-op. A "PAGE" pseudo-OP following
a “SUBTTL® will force the subtitle to appear immediately. If the “SUBTTL"
text string is null (of zero length), then subtitling will cease on the
subsequent page. A line will also be skipped between the subtitle and first
printed text line on the page. Where many *GETs are being used, you may want

to establish a sub-title for each to provide a visual indication on the
listing. For example:

.

. Miscellaneous Pseudo-0Ps
4 - 19

- Assembly Language Pseudo-OP Codes

SUBTTL ‘<Module B - initialization routines>'
PAGE OFF

*GET MODULEB:1
SUBTTL ‘<Moduie C - data extraction routines>'
PAGE OFF

*GET MODULEC:1

will print the sub-title on each page of the 1listing associated with MODULEB.
Ideally, each module should be preceded with a SUBTTL statement.

The “TITLE* pseudo-OP automatically invokes -a page heading and adds the
title to the headings of assembler listings. The title string is limited to
28 characters and only one “TITLE" is accepted. The left and right caret®
(angle brackets) must be entered but are not output in the listing - they
serve only to delimit your title string. The title line will include the EDAS
version, the date and time retrieved from the system, your title string, and
a page number [page number is limited to the range <1-255> and will wrap
around to zero if more than 255 pages are printed]. For this reason, if you
use a titleg, 1t is advisable to set BAYE ond TIM{ prior to executing the
Editor Assambler. A line will be skipped osetwsen the title and start of
printed text (or subtitle if used). Lower case titles will be maintained by
surrounding the angle brackets with single quotes as in:

TITLE '<This is an UC/lc title>!

The first “TITLE" pseudo-0P found in the text will be used for titling.
Any other "TITLE" pseudo-ops will be ignored.

Miscellaneous Pseudo-0OPs
X 4 - 2@

Assembler Directives

ASSEMBLER DIRECTIVES

The MISOSYS Editor Assembler, EDAS Version IV, supports five assembler
commands. In contrast to source statements which are translated to machine
language, these directives are “conversation to the assembler. Each directs
the assembler to behave in a particular manner or perform a specific
function. The directives, by themselves, do not generate any machine language
code - they merely act as “commands* to the assembler. Each “command" must
start 1in column one of a source statement 1line, and must start with an
asterisk (*). Only the first character of each directive is significant. The
entire directive “word" may be entered, or the directive may be abbreviated

to its first character. The assembler directives are: ~

*GET file . Causes the assembler to begin reading source
code from the “file".

*_ IST OFF Causes the assembler listing to be suspended,
starting with the next line.

*_IST ON Causes assembler listing to resume, starting
with this line.

| *MOD exp Advances the “module* character substitution |
string and optionally sets/resets the prefix.

| *PREFIX exp Establishes or disengages a prefix character |
for the MACRO substitution string.

*SEARCH 1ib Invokes an automatic search of the Partitioned
Data Set (PDS) “1ib" to resolve any undefined
references capable of being resolved by PDS

| assembler source member modules. |

|

DIRECTIVES - GENERAL
." 5.1

Assembler Directives

wGET f1lespec

This directive invokes assembly from a source disk file. Its syntax is:

*GET filespec

I
| |
| filespec Causes the assembler to begin reading source |
% code from the file, “filespec”. }
- =

LEREUBBRADBBEREGIVUSUERBZBEBLBEERDSRDLREBARVSGTIRVECBELEZEROEERBHE

~
This directive tells the assembler to temporarily switch i{ts source
assembly to the file identified as “filespec", and use it to continue the
assembly. A default file extension of “ASM® will be used if none is provided
in the directive statement. The file itself can be headered and/or numbered,
as EDAS will automatically detect its type and adjust accordingly. When the
end-of-file 1s reached, or an assembly language “END* statement is read,
assembly automatically resumes from the next statement following the
statement which invoked the "*GET". Any “END" statement read during the *GET
process will be 1gnored as the program end. The only “END" accepted will be
that in the text buffer.

“#GETs® can be nested to five (5) levels. That 1s, a statement in memory
can GET a file which GETs a file which GETs a file which GETs a file which
GETs a file. This assembler directive 1s extremely powerful. It can be used
to provide the capability of assembling large programs which are stored on
disk in modules, s$ince more than one *GET may be in the text buffer or
"gotten® file.

The text buffer can be composed of nothing but *GET statements (and one
END statement) which will provide maximum space 1in the text buffer for
generation of the symbol table. For example, the following could represent
the source linkage needed to assemble a program called “PARMDIR/CMD":

; PARMDIR/ASM - p4/97/82

H Ravpi

: Linkage to assemble PARMDIR
: RuRah
*GET PARMDIR1
*GET PARMDIR2
*GET PARMDIR3
END PARMDIR

.

3

- syntax is:

Assembler Directives

LIST ON/OFF

This directive is used to suppress the listing of blocks of code. Its

L)
BRI ERRA T RSN AN LN R RN T BRI DINLEVT L LA TRBTESBRR

* IST off/on

OFF Causes the assembler listing to be suspended,
starting with the next statement.

ON Causes assembler 1isting to resume, starting

|
I
|
|
]
|~
|
with this statement. |
|

PO P,

The pair of directives, “*LIST OFF" and “LIST ON®, can be used to
suppress the listing of a block of code. Once the “*LIST OFF" is invoked, all
statements following will not be listed to the display or the line printer
(if assembler switch: -LP is specified). The directive "“*LIST ON*

re-establishes standard 1isting. An exception to the suppression is that any
assembler source statement containing an assembly error will be listed alon

with its appropriate error message. In this manner, you can use an IS%
OFF* directive at the beginning of your assembly source (to suppress all
1isting) and lines containing errors will be forced to be displayed by EDAS.

Examples of the *LIST directive:

*LIST OFF

DB 'This line will not be displayed!®
*LIST ON ‘

*LIST OFF

DB 'Only the next line will be displayed!’
LD (M;100
*_IST ON

. DIRECTIVES - LIST
5-3

Assembler Directives

*M0D expression

BRBBVLBBRBABRRD

This directive is used to increment a character substitution string for
the purpose of simulating local labels. Its syntax is:

SR S R RS R NN RS S ANITRIRA RN RERIRNEBRRBR

#M0D {expression}

Advances the “module® character substitution
string.

character to the substitution string or reset fv

the current prefix.

| |
| l
| |
| |
{ expression 1is an optional expression to specify a prefix l
| |
| |
® " 1

anaasa3a:sazaanaazagnanuazsanaaaauaauu-sasan:nnsansxaa:axas.-

The ®*MOD* directive will increment a string replacement variable each
time the directive 1is executed. The string will replace the question mark,
“P*, character in labels aid label references Tound in any line asseimbled
from a *GET or *SEARCH file. Its use is essentially applicable to subroutine
libraries where duplication of 1labels could occur. By specifying the “*MQOD*“
directive as the first statement of each module of code and by using a

question mark in labels, you can construct source subroutine libraries for" -

use in your programs without having to worry about duplicate labels occuring.
Unless at Teast one “*MOD® statement is specified, the question mark will not
be translated.

Labels such as $?7001 will have the "7 replaced with the current “MOD®
string value. Thus, a "*MQD® directive preceding each module will force $7001
labels 1in each module to be distinctly named by having the question mark
replaced with the substitution string. The “MOD* string value cycles from

A-Z, then from AA-AZ, BA-BZ, ..., ZA=ZZ. This will allow for a simulation of

“local" labels. Remember, the “?* substitutions will only be made to those

source lines fetched from a *GET or *SEARCH file, not from statements

;is}deng in memory! It really was designed that way folk's, 1it's not just a
mitation.

If you need more than the 702 unique string values generated by a
single/dual alphabetic string (26%26+26), you will have to specify a "MOD
prefix®. The prefix invokes a user-specified third character for the
substitution string. The “*MOD* directive provides for the assignment of the

g:ara?ter prefix to the substitution string. You control the prefix. For
ample:

*MOD '3
assigns the character "$* to prefix all “MOD* substitutions. Once invoked,

' Yyou can change to any other character by another “*MOD* command or remove the
prefix by entering an expression whose value is zero.

DIRECTIVES - #HOD
5-4

N

Assembler Directives

SPREFIX expression

This directive gives you the capability of specifying a constant third
character to the MACRO substitution string. Its syntax 1;:

BRRNERERAART LIRS R AT TTEIITTITTRIF LI E ALV TTIZRTITARNT T RERES

*PREFIX expression

|

| |

| expression establishes or disengages a prefix character |

= for the MACRO substitution string. L
) ¥

The Macro substitution string can be prefixed with a user-entered
character constant.. This is achieved by using the “*PREFIX* assembler
directive. The expression character or value entered in field two becomes the
prefix character. It must be a character that is valid for assembler source
labels. For example,

*PREFIX '$°

will cause MACRO local label string substitution to be expanded as “$AA",
“$AB*, "SAC", ... A binary zero value will eliminate any prefix character
once invoked, For example,

*PREFIX @
will disenggée the MACRQ string substitution prefix character.

. For more information on the use of the MACRO prefix character, see the
chapter on the MACRO PROCESSOR.

. OIRECTIVES - *PREFIX
‘ 5-5

Assembler Directives

*SEARCH filespec

This directive 1s used to invoke an automatic search of a Partitioned
Data Set (PDS) source library. Its syntax is:

R R R A R R S ER R AR R E R R R RN CRURACCERRIBERERER

#*SEARCH filespec

| |
| |
| filespec Invokes an automatic search of the PDS |
| “filespec/LIB" to resolve any undefined |
| references capable of being resolved by .
% PDS assembler source member modules. % ~y
3 =

This assembler “*SEARCH filespec* directive is a very powerful feature.
It will invoke, a directory search of the Partitioned Data Set "filename/LIB"
for all members that will resolve undefined references 1in the source
assembly. This provides a source 1library structure for EDAS. “*SEARCH" will
require two (2) levels of “*GET" nesting. Also, restrictions prevent a
M*SEARCH" member from using a “*GET" directive or another “*SEARCH" directive
(such a request would be ridiculous anyway). The 1library members must be
lowest level. The default file extension for searched files is “LIB*.

The PDS source library constitutes members composed of one or more
routines. Each routine that needs to be automatically fetched should have its
routine name (the label field entry) in the PDS member directory. This is
accomplished by naming the source file to be appended to the library the same
name as the routine or by appending using a MAP. Details on constructing and
using Partitioned Data Sets 1s 1included with PDS documentation. The PDS
utility is available separately.

EDAS will search the PDS library and locate a member name that matches
up with a symbol table entry. If that symbol 1is currently undefined, the
source membér will be accessed and read just as if it were the target of a
“GET*, EDAS will verify that the member just accessed did in fact define the
- symbol 1invoking 1its access. If a member is accessed and there exists no
symbolic label in the member that has the same name as the member name, EDAS
will abort the assembly and advise of a library error by displaying the
message:

Member definition error: filespec(member)

At the conclusion of the member’s source code, EDAS will continue to
search the PDS library until 1t exhausts all PDS members. There are no
restrictions on the order of members. Routines in one member can reference
other members with complete disregard as to any ordering of entries in the
PDS. EDAS will correctly access all members required.

DIRECTIVES - #SEARCH
5-6

Assewbler Directives

Where more than one routine is in a member, each should be surrounded
by IFREF's/ENDIF and each should have an entry in the member directory (you
must use the MAP option of PDS to provide multiple entries to a member). This
will benefit by not having needless routines appear in your object code

output.SFor example, the following depicts two routines stored as one member
in a PDS. .

; Entry for routine entitled “MOVE®
IFREF MOVE
MOVE . ;Routine of code

ENDIF

; Entry for routine entitled “SHIFT™ v
IFREF SHIFT

SHIFT . sRoutine of code

ENDIF

If your source code references "SHIFT" but not "MOVE", as 1long as both
“SHIFT® and “MOVE*® are member entries in the 1library PDS directory, a
“*SEARCH" of the library will access the member and assemble only the "SHIFT*®
routine. You should read the section on the "IFREF* conditional in the
chapter on ASSEMBLER PSEUDO-0OPS to understand the evaluation of the “IFREF™.

DIRECTIVES - *SEARCH
. 5 -7

P

Macro Processing

WHAT IS A MACRO?

In virtually all programs, you will find particular sequences of code
that are repeated. These sequences might be termed short routines. They could
be so short that the overhead needed to set them up as CALLable routines is
ineffective. Or, they could be longer routines .that 'just - cannot be
constructed as CALLable segments. You may even want a code sequence to be an
in-line assembly in contrast to a CALLable routine for the purpose of fast
execution. By far the most needed function, is to be able to have

paraneterized routines - algorithms that operate on different values each
time the algorithm is invoked. -

There are at least three ways to deal with routines that are repggted in
a program. You can <I>nsert the’ entire routine wherever it is needed. You
could also <C>opy it from the first appearance to wherever you needed the
routine. Or you could establish the routine as a macro. The first method is
obviously tedious on -your fingers. The second, is not tiring, but could take
up more source storage than is desirable. Also, 1if you decide to change the

routine's algorithm, having many copies in a program can be cumbersome to
update. ‘ .

The third method mentioned is the use of macébg, Consider the fbl]owing
commonplace sequence of code:

LD HL, VALUE
LD (MEMORY), HL

How many times is this little sequence repeated in your programs? Five? Ten?
§$ we set up a macro near the beginning of our program that looked something
ke this:

STOR MACRO #VAL, #MEM ;Macro to store "VAL" into memory

LD HL , #VAL ;Get value into HL
LD (#MEM), HL ;Load value into memory
ENDM ;End of the macro

then we could perform the above two statements with one macro call as
follows: '

STOR VALUE,MEMORY ;Invoke the macro

The first part of the example, defines a macro called “STOR*. This 1is done
exactly once per program! If we save our macros in a macro source file, each
of our programs could “*GET MACROS*; thus, we would not have to even manually
enter the macro into each program.

We invoke the statements defined in the macro by specifying the macro
name AS IF IT WERE AN OPCODE. Using the macro invocation method, we can save
storage space and introduce structured techniques to our coding. Notice that
we have used some fictitious names when the STOR macro was defined. These
names are called “dummy" parameters. They serve to provide a means to pass

USING MACROs
. 6 -1

Macro Processing

actual parameters when the macro is invoked. It 1s through the dummy
parameters that the real power of the macro 1is wutilized. Ouring the macro
invocation, the model statements are expanded with substitutions for the
dummy parameters that are provided in the macro call.

MACRO DEFINITION

The format for a macro definition 1s 1{llustrated in the following
example:

MOVE MACRO #parml,#parm2=df1t2, #parm3 v
LD HL, #parml
LD DE, #parm2
LD BC, #parm3
LDIR
ENDM

BRARZEIE LR AL MR W IR MR WAL M AR AL SR MM AR MMM M B MMM MMEMBmE MR ARE B R EmaasRaIEmaE2ZNS

The macro definition consists of three parts: a macro prototype, a macro
model, and the ENDM statement. The prototype 1s used to specify the macro
name and the dummy parameter names used 1in the model. Default substitutions
may be specified in the prototype to be used if the corresponding parameter
is not passed in the macro invocation. The macro model contains all of the
assembler statements to be generated when the macro is invoked. The model is
sometimes called the macro skeleton or template. The dummy parameter names
occupy the positions where the actual parameters will be placed by the macro
processor 1in EDAS. The third part, the ENDM statement, is used to indicate
the end of the macro model. ‘ '

When a macro is defined, it is not assembled into your program. The
macro prototype is parsed and analyzed. The macro definition 1s then stored
in a compressed format within the macro storage area. Comments appearing with
the macro definition are not stored. That means that if the macro expansions
are listed in the assembler listings, they will not include the comments -
only the definition will.

—

)

Macro Processing

Macro Prototype

The MACRO pseudo-0P is used to define the prototype of’a macrb model.
Its syntax is: .

I |
mname MACRO {#parml}{=df1tl}{,#parm2{=dfi1t2}}{,...}

o aike is the macro name used to invoke the macro.
| #parmn are dummy parameters of the macro which will |
be replaced by actual parameters during the 1~
macro invocation. “#* is a required prefix.

I

| dfitn are optional default strings to be used for |
| the dummy parameters when a parameter is not |
| provided in the macro invocation. |
|
E

Macros are named Jjust like symbolic labels. The same rules apply. The
length of macro names can range from <1-15>. Special characters <@, $, _> may
be used in the name construct. Do not use the question mark in macro names as
it would conflict with the symbol substitution string use made of "“7*.

There is no upper 1imit on the number of macro parameters; however, you
can not exceed the 1length of a standard assembler source statement.
Therefore, the statement length becomes the limiting factor. As is the case
with macro names, the rules for naming dummy parameters are identical to the
rules for labels. The “dummy" names are not included in the symbol table
generated by EDAS, thus there is no restriction on reusing the same name as a
“dummy® for a label; however, to avoid confusion, it is recommended that you
avoid using dummy names as symbolic label names.

Default strings can contain any character except the comma, “,". The
comma is used as a field delimiter. There 1is no limit to the length of a
default string other than the limiting factor of the statement length.

Macros must be defined prior to use but can be defined in either disk
“*GET files® or memory text.

Macro Model

Any valid Z-80 statement, EDAS pseudo-OP, or assembler directive (except
“wGET® or “*SEARCH") is valid in the macro model - except the “MACRO*
pseudo-0P (no nested definitions, please).

USING MACROs
. 6’3

Macro Processing

ENDM pseudo-OP

This pseudo-0P is used to specify the scope of a macro model. It is wused
much like the "ENDIF". Its syntax is:

.‘Bﬂ8C8"B‘ﬂ.8888aﬂ"aS88'ﬂaaI8akagﬂ38‘BSB‘BBI!I'GS-'I‘IQB'BURC.

| |
| mname MACRO parms |
| model statements |
| ENDM |
| I
BRSBTSV RSB/ EEEEEESARDES TN ABRSRULNDUVBARBLILDIBRERAN

The “ENDM" pseudo-0OP must be used to let the macro processor know whgt
is the last macro model statement.

Macro Definition Examples :

This macro will move a block of memory from one location to another. If
the “length* parameter is omitted, then a value of “255" will be used:

MOVBLK MACRO #FM, #T0, #LEN=255

—

LD HL, #FM
LD DE, #70
LD BC, #LEN
LDIR
ENDM

This is a macro to clear a region of memory (i.e. set to §). This macro
will invoke the MOVBLK'macro in a nested invocation:

CLRMEM MACRO #BUF, #LEN=255
LD HL, #BUF
LD (HL),P
MOVBLK #BUF, #BUF+1,#LEN
ENDM

This macro will add the 8-bit register "A® to 16-bit register pair “HL":

ADDHLA MACRO
ADD A,L
LD L,A
ADC A.H
sus L
H,A

LD
ENDM

USING MACROs
6 - 4

e~

Macro Processiﬁg

There is no requirement that a macro must contain dummy parameters as is
evidenced by the last example.

Incorporating Conditionals

Conditional pseudo-0Ps can be specified 1in macro models. For instance,
say you want the MOVBLK macro to be able to perform a non-destructive move (a
destructive move would be where the destination is an address between “from"
and “from+length-1"). You can insert conditional pseudo-0Ps to test the
parameters during the assembly of the expansion (labels substituted for #FM
and #T0 must be defined prior to invoking the MACRO). Then, only certain
segments of the macro will be assembled according to the result - wf the
evaluation. Analyze the following example:

MOVBLK MACRO #FM, #T0, #LEN=255

IFNE — #FM, #T70 ;Don't expand if #FM=#T0 ,
LD BC, #LEN ;Establish the length T T
IFGT #FM, #70 ;00 we LDIR or LDDR?
LD HL , #FM +#FM > #T0 => LDIR
LD DE, #T0
LDIR
ELSE
LD HL, #FM+#LEN-1 ;#TO > #FM => LDDR
LD DE, #TO+#LEN-1
* LDDR
ENDIF
__ ENDIF
ENDM

MACRO NESTING

The CLRMEM example depicts a macro that nests a macro invocation. Macros
may be nested to seven (7) levels. That is, at any time, macro expansions for

7 macros called in a chain can be pending. It is very important to note that
macro definitions cannot be nested. For instance:

ABC MACRO #PARM
(model statements)
XYZ MACRO #PARMS groe
(model statements)
ENDM
ENDM

is 1llegal and will result in an assembly error. It is entirely correct,
however, to invoke a macro within a macro definition prior to the definition
of the called macro. The called macro must, however, be defined prior to
calling the first, or highest level, macro. For example:

USING MACROs
6 -5

Macro Processing

; ABC MACRO #PARMS, coo
(model statements)
MOVE parm,parm ;call macro "MOVE®
(model statements)
ENDM

MOVE MACRO #parml, #parm? , #parm3

(model statements)
ENDM

is perfectly legal. The expansion of the "MOVE® macro is not performed during
the definition of the "ABC" macro but rather during the finvocation of "ABC".

If macro A “calls® another macro, say B, any dummy parameter in the
macro call of B that matches a dummy in macro A, will be considered part of
macro A and the parameter substitution will be invoked by the parameter
passed when the user calls macro A. .

MACRO INVOCATION

The invocation of a macro is termed a macre “call®., The macre processor
then proceeds to replace. the call with the model statements specified when
the macro was defined. The replacement of the macro call by the macro model
statements is termed the macro “expansion®. -

During the expansion, the "actual®™ parameters passed in the call
statement are substituted for the "dummy® parameters which appear in the
macro model and which are designated in the prototype of the macro. Note that
the actual parameter values are character strings and can be labels,
expressions, or data constants. An actual parameter can even be a quoted
string data declaration if its use is designed into the macro model. ‘

The entire expanded macro model {is listed during the listing pass (phase
two) of EDAS. You may find that you don't really want to see these expansions
since the macro definition contains the entire illustration of the macro. An
assembler switch, "-NM* is provided in the <A>ssemble command to suppress
listing of macro expansions. In the case of nested macro calls (i.e. a macro
is defined which calls another macro which was separately defined), only the
primary macro call will be listed if the “"suppress* switch is invoked.

The substitution of the actual character string parameters for the
dumnys occurs during the macro expansion when the macro is called. Since a
macrg can have more than one parameter, it is necessary to have a procedure
that specifies which actual parameter corresnonds to each dummy parameter.
There are two methods supported in EDAS. Parameters can be passed to the
macro expansion when calling by either position or keyword.

USINE MACROs
6-56

Macro Processing

Positional Parameters

"positional® parameters are correlated by the position they appear in
the macro call. For example, 1if the "MOVBLK" macro were called by the
statement: .

MOVBLK VIDEO,CRT_BUFFER,CRT_SIZE

then the substitution string “VIDEO" would replace every appearance of “#FM",
the string “CRT_BUFFER" would replace every appearance of “#T0", and
“CRT_SIZE" would replace the dummy parameter, “#LEN". Note that actual
strings’ are positionally correlated with the positions of the “dummy
parameters in the macro prototype.

If you wish to omit an actual parameter in a macro call, then you must
supply the comma to denote its place. For instance:

SHIFT 420@H, ,190H

omits the middle of three parameters. Generally, a defﬁu]t would have been
provided in the macro definition.

Keyword Parameters

If the 'number of parameters is large, 1t is sometimes burdensome to
remember the order of thié’ parameters; or to' :provide the correct ‘nuiber of
commas 1f a series of parameters are omitted. These drawbacks are remedied by
the use of “keyword" parameters. The macro call parameter 1list can identify
the actual parameters by using the name of the dummy parameter as well. The
keyword syntax is:

I |
} #dummy=actual parameter %
’ mname #parm2=actual?2,#parm3=actualld |

" [
ERRTBIAVATEISETZIRNETTRRNEIXEREIZIXEEITIEAZRNERRRATEEIXRIINEIAERXAINERKRE

If the previous macro call was invoked by keyword parameter
specification, it could look something like this:

SHIFT #LEN=1Q0H, #FM=4200H

. USING MACROs
: 6§ -7

Macro Processing

Mixing Positional and Keyword Parameters

A single macro invocation can intermix both positional and keyword'

parameters. The point that needs clarification, 1is what positions are
actually denoted in the parameter list. It 1is simply treated. In a mixed
parameter list, keyword parameters are ignored when considering place
positions. For example, in the following macro call:

SHIFT #LEN=1¢@,BLOCK,BUF_START

even though the length parameter appeared first in the parameter list, since
it was designated as a keyword, it is ignored from the positional count and
"BLOCK* is the first parameter with “BUF_START" taking up second place. Lg a
similar manner:

COMP PARMl,#P6=2,,PARM3, #P8=38,PARM4

“PARM1* 1js in position ﬂane, the second parameter is omitted (the double
comma), "PARM3" and PARM4*® are 1in the third and fourth positions
respectively. The sixth and eighth parameters have been entered by keyword.

Please note that the parameter 1ist contains five parameters. Thus if
you were to use the "%3" operator which returns the number of parameters
g?ssed in a macro call ("%%* is described later), it would return a value of

ve. u

LOCAL LABELS

So far, all of the examples have shown macro models without labels. What
would happen if we had a macro defined as follows:

FILL MACRO #CHAR, #NUM

LD B, #NUM
FLP LD (HL), #CHAR
INC HL
DINZ FLP
ENDM

We would have a problem because every time the macro was called, the label,
®FLP®, would be used. If *“FILL® was 1invoked more than once, the assembler
would generate MULTIPLY DEFINED SYMBOL errors on each expansion. We have to
be able to use labels, but we need to find a way to be able to make ™“unique®
labels on each macro expansion.

EDAS provides a facility for doing this by keeping a substitution string
which is changed each time a macro is expanded - any macro. The substitution
string replaces the question mark character, “?%, during the macro expansion
whenever it appears outside of single quotes in a macro model statement. Each
time a macro 1is expanded, the “value* of the string will be changed. The

USIna MACKOS
. 6 -8

-

)

]

—

Macro Processing

“value® starts with the single letter "A", changes to "B*, ..., “Z%, then
increments to the two-letter strings, "AA", and changes to “AB“, “AC", ...,
“BA", ..., "IZZ" each time a macro call is made. Thus, by incorporating the
question mark as one of the characters in the label of a macro model
statement, it can be used to uniquely identify labels local to a macro. You
may want to standardize the way you create labels to ensure that uniqueness
is maintained. For example, if you use macro labels of the form, "$$71%,
“g$72%, ..., these will expand to “$$AAl", “$$AA2*, ... within one macro
during its first expansion. The second macro expansion will create “$$AB1",
$$AB2, ... You can then repeat the use of “$$721%, “$3$722“, ..., in another
macro since for each macro expansion, the substituted string will be
different. s

The substitution string will be different from the “*MOD* directive
substitution but is similarly used. Macro expansion substitution of “7* takes
precedence over *MOD substitution. In the case of nested macros, each nest
level will have its own unigue substitution (since each nest is a macro call
which invokes an expansion).

The macro substitution string can be prefixed with a user-entered
character constant. This 1is achieved by using the "“*PREFIX® assembler
directive as in:

*PREFIX character-expression

where the expression character or value in the argument becomes the prefix
character (it must be valid for assembler source labels). For example,
“*PREFIX '$'" will cause macro local label string substitution to be expanded
as “$AA%, “$AB¥, “SAC*, ... A binary zero value will eliminate any prefix
character once invoked. ~

By using the question mark string substitution specifier, the previous
macro would be defined like this:

FILL MACRO #CHAR, #NUM

LD B, #NUM
$521 LD (HL),#CHAR
INC H
DINZ - $$71 : o
ENDM o ot o T e
.- USING MACROs

-9

Macro Processing

STRING COMPARISONS

It is sometimes desirable to be able to test within a macro model, the
exact string passed as a parameter. Four conditional pseudo-OPs have been
added strictly for string comparisons within macro processing. These are:

: IFLTS stringl,string2 TRUE if stringl < string2 |
i IFEQS stringl,string2 TRUE 1f stringl = string2 }
’ IFGTS stringl,string2 TRUE if stringl > stringz : P
i IFNES stringl,string2 TRUE {if stringl <> string2 i

RBVBEBIJIEB RSV LERESTRVLERMBRAVBLEIRECTRELIERATETALIRAUREETRBREBRRXTBS
By

These pseudo-OPs provide TRUE/FALSE evaluation in the comparison of
stringl to string2 (like the non-"$" pseudo-QPs do with mathematical
expressions). Obviously, hard encoding of both stringl and string2 would be
nonsense! Aha, he said... If we use a macro dummy parameter, it will be
substituted by the actual parameter string passed in the macro call
expansion. This means that the macro itself can test the parameter string in
a8 limited manner. For example:

IFNES #70, (DE)
LD DE, #T0
ENDIF

as bart of a macro model, will have the "#TO" replaced during the expansion.

The test becomes dynamic! The dummy parameter can be either stringl or
string2 - it doesn't matter. 4

These string conditional pseudo-OPs can only be useful in macros. That's
because the evaluation, to make sense, has to be dynamic.

T s Bap evens .,
USING HMACRGs

6-1p

Macro Processing

TESTING STRING LENGTHS

Another feature available in the macro processor is the per cent sign

. “%¥* operator. This operator is used to recover the length of the passed

parameter string and the number of parameters passed in the macro call. Note
that the limitation for the use of the "¥" operator, is that it is acceptable
only for parameters of the current macro expansion. That means that you can't
test for lengths outside of the current macro if you are nesting macro calls
(macros cannot be recursive!). The operator can be used like these examples:

LD B,X%#PARM ;loads B with the length of #PARM
£~

IFGT %#PARM1,6 ;Restricts parml to a length <1-6> '

ERR Parm too long!

ENDIF

IFLT %%,4 ~ ;This macro requires 4 actual parms

ERR Missing required parameters!

ENDIF

As can be noted, the "%%" operator will return the number of parameters
passed in the current Macro call. When a dummy parameter name (including the

“g* prefix) follows the per cent operator, the length of the parameter string
is returned.

These values can be tested arithmetically to produce a TRUE/FALSE result
(as was just demonstrated), or they can be used directly to represent logic
TRUE/FALSE conditions. Realizing that if a parameter was not passed in the
parameter list of the macro call, its length would be zero. A zero is also a
logical FALSE. EDAS will accept as TRUE, any non-zero value (in normal use of
TRUE/FALSE specifications, “-1" is recommended for TRUE to maintain proper
evaluation of the “,NOT.* operation). Thus, the string lengths can be
minimally used to test if the parameter was not passed (X#parm=@=FALSE) or
the parameter was passed (¥#parm<>@=TRUE).

CONCATENATING MACRO LABELS

You can concatenate a string to a dummy parameter name by connecting it
with the concatenation operator, "%&". For instance, the model statement:

IFREF #NAMEZ&L

will have the "#NAME® replaced by the MACRO call substitution string appended
with the letter “L®,

USING MACROs
. 6 -11

s

~y

_— .

Y

Editor Assembler Commands

The EDAS Version IV Editor Assembler can perform the following commands.
These commands may be typed after the prompt symbol “>%. The prompt symbol
appearance indicates the “command mode" of the Editor Assembler. The
following 1ist contains all command mode instructions recognized by the
Editor Assembler with a brief description of each.

A <A>ssemble source currently in the text buffer.

B ranch to a specified address.

<

Globally <C>hange a string of characters (STRINGl) to another string of
characters (STRING2) throughout a range of text lines.

<C>opy a block of lines to another location.
<D>elete specified line(s).
<E>dit a specified line of text.

<F>ind a specified string of characters.

L ™m o m O O

Provide <H>ard copy output (line printer) of a specified range of text
buffer lines.

-t

<I>nseft source text line(s) at a specified line with a specified line
nunﬁer_increment.

<K>111 a file from a diskette.
<L>oad a source text file from disk.
<M>ove a block of text from one location to another.

Re<N>umber source text lines in the text buffer.

v =2 =X - x

<P>rint a specified range of source text code currently in the text
buffer.

<Q>uery a directory from the designated drive.
<R>eplace lines currently in the text buffer.
<S>witch the upper case/lower case conversion mode.

<T>ype source text lines without line numbers to a line printer.

c - »n X 0O

Display the memory <U>tilization - bytes used by the text, bytes
available, and the first free address.

v <V>iew a file without loading it into the text buffer.

n COMMANDS - SUMMARY
7-1

- N X K

CLEAR
UPARW
DNARW
LTARW
RTARW
SRARW
PAUSE

UPARK
DNARW
LTARW
RTARW
SRARW

Editor Assembler Commands“

<W>rite the current texf buffer to disk.

e<X>tend the text buffer by eliminating the Assembler.
Command reserved for user. |

Alter_printed lines per page and page length.

Send a message to a Job Log (LDOS only).

Clear the CRT screen.

Scroll up one source text line.

Scroll down one seurce text line. “ “3
BACKSPACE key

TAB key

Page forward one screen.

Performs a functional pause of any operation: <SHIFT @ (Model I/III)>
<HOLD (Model II)> for the PAUSE function).

=> the up-arrow key

=> the down-arrow key

a> the left-arrow key

s> the right-arrow key

a> the shifted right arrow key (F2 on Model II)

COMMANDS - SuUMdaRY
7 -2

Editor Assembler Commands

CA>GSEMBLE

The <A>ssemble command is used to invoke the assembly of your source
stream from memory and optionally, disk files (when “*GET filespec" or
“*SEARCH library® is used in the source stream). The <A>ssemble command is
also used to create a cross reference data file for downstream processing by
the XREF/CMD program which will create a complete symbol cross reference
listing. The syntax of the <A>ssemble command is:

BEXRRBIVBETCETERAIVEBEBRERCLEIRDBLEIELREIBETERATITIATILEIRITTTXRERIREN

I |
| A (filespecl/CMD}{,filespec2/REF} {-SWITCH {-SWITCH}...} | *

filespecl is the filespec to be used for the object code
file generation. If the file extension is
omitted, “/CMD" will be used (see -CI).
| filespec2 is the filespec to be used for the cross ref- |
erence data file. If the file extension is
omitted, “/REF" will be used.
| Switches: |
-Cl used to generate a Core-Image object file.
-IM used to assemble the object code Into Memory. |
-L.P used to generate a Listing to the Printer.
-RC used to suppress the listing of conditional
| blocks evaluated to be logically FALSE. |
-NE used to suppress the listing expansion of data
| declaration pseudo-OPs. |
-NH used to suppress writing the header record to
| the object code file. |
~=NL used to suppress the listing pass.
| ~KM used to suppress listing MACRO expansions. |
=NO : a dummy switch useful as a default switch in |
JCL execution of EDAS. ‘ }
-SL used to suppress local label listing . |
|
-WE used to pause the assembly listing and Wait if |
| an Error occurred. |
|
Parameters continued next page |

838388'ﬂ?'ﬂ.&’ﬂ8338383833:33333:33=333=3=3==3===3===38=3383=38

" COMMAKDS - ASSEMBLE
7 -3

Editor Assembler Comnan&s

=K0 used to assemble With Object code generation.

L) used to generate a sorted symbol table listing
during the assembly process.

| |
| |
| |
I
=XR used to generate a cross reference data file
} for subsequent processing by XREF/CMD. }
BEEEESESESEECESSRES BT RESTLRRLIZSEARIVEEERNRLBLLB VBN LRZVBERBBRBBE

The <A>ssemble command can be used to generate object code into either
an executable object code file (/CMD) or a binary core-image object code ftle
(/CIM). Your program can also be assembled directly into the unoccupied
memory region when the memory locations to be occupied by your program are
not in conflict with storage areas of the assembler, your resident source
code, the MACRO storage area, or the symbol table.

The source text to be assembled can exist either in memory only, or a
combination of memory and disk files. The in-memory source is considered to
be 1in the “text-buffer*, When your source program is too large to be
contained solely in the text buffer, 1t needs to be segmented into a
combination of a memory segment and one or more disk file segments. The disk
file segments are accessed during the assembly process by use-of the “*GET
filespec" assembler directive (detailed instructions concerning the use of
*GET, are contained in the chapter entitled “ASSEMBLER DIRECTIVES®).

The following paragraphs describe the command 1line entries and switch

options in detail. Please note that if the EDAS e<X>tend command has been
invoked, the <A>ssemble command will be inoperative. ‘ °

Filespecl

The first filespec on the command 1line, identified as "filespecl", is
the filespec to be used for the object code file. Its entry is entirely
optional. When an object code filespec 1s entered, its entry will
automatically invoke the generation of the object code to the disk file.
Another method can also be employed to invoke object code generation to a
disk file by means of the “-WO" switch (see below). If your filespec entry
omits the file extension, the default of "/CMD* will be used. This default is
changed to */CIM" if the "-CI* switch is specified. It is recommended that
you let the assembler assign the file extension, automatically. It will help
to keep your directories orderly, and there will be less danger of
overwriting a source file with the object code file.

Fjlespecz

The second filespec on the command 1line, noted as “filespec2",
identifies the filespec to be used when writing the cross-reference data. The

COﬁMAND; - ASSEMBLE
. -4

i’\/

-

Editor Assembler Cowmands

cross-reference data generation is optional - 1t is required in order to run
the XREF/CMD program. EDAS will assign a default file extension of “/REF" if
you omit the extension from your filespec. As XREF/CMD will also use this
extension when accepting the file specification, it is suggested that you let
EDAS .assign it. You can also invoke generation of cross-reference data by
using the "-XR" switch (see below). EDAS requires the entry of the comma to
recognize the cross-reference filespec as “filespec2". Therefore, if you want
the cross-reference data file but not the object deck file, then either start
the command 1line with the comma separator or use the XR switch without
entering the filepec with the command line.

Switch =CI

A0 (D 4B D W XD) W 4B B

i

The *-CI* switch is used to generate a “core-image" object code file.
Executable command files 1in LDOS are constructed with address information
that the system loader uses when 1loading and executing your command file.
Also, a header record 1is usually found in a load module object code file.
There are times when you would prefer an object code file without this “load"
and “comment“ data. For example, say you want to burn a Programmable Read
Only Memory (PROM) from a file. A core-image file is needed. When the “-CI*
switch is specified, a number of changes take place in EDAS. First, the
object code file default extension is changed to "/CIM" (note: you must still
enter the filespec or the switch “-WU* to invoke object code generation).
Next, the header record and the transfer address record are suppressed. Any
COM pseudo-0P- statement is, likewise, suppressed. A core-image file needs to
contain contiguous address sequential code. Since EDAS reserves only storage
locations when assembling the DS/DEFS pseudo-OPs, the DS instruction would
cause your object code file to be non-contiguous. Invoking the "-CI* will
automatically convert all “DS" statements to their corresponding “DC®
statements with a zero value for operand2.

Switch =IM

This switch will invoke object code generation; however, instead of the
code being written to a file, it is placed into memory starting at the
address specified as the operand of the "ORG" pseudo-OP. The "“-IM" switch
will override the entry of the “-WO" switch or entry of “filespecl®. That is,
i both "=IM® and “-W0® (or filespecl) are entered, assembly into mempry will
cccur and assembly to disk will NOT take place.

Your program will not be permitted to overwrite any region below the end
of the text buffer (or macro storage area if macros are being used) nor will

. 1t be permitted to overwrite the symbol table stored in high memory. The

error message,
Mesmiory overlay aborted

will be displayed if your assembled program will violate these restrictions.
The assembly will be immediately stopped and EDAS will return to the command
ready prompt. Upon successful completion of the assembly to memory, the

. COMMANDS - ASSEMBLE
7-5

Editor Assembler Commands:

message,

Memory region loaded
XXXX {is the transfer address

will be displayed. This does not mean that your program assembled without
error = only that the object code generated did not interfere with the text
buffer or tables created during the assembly process. The "XXXX* field in the
second message will contain the transfer address of the program. It will be
Tisted in hexadecimal.

Switch -LP

" The "-LP" switch is used to send the assembler 1isting, error messageées
occurring during the assembly of your source code, and the symbol table
listing (if specified by means of the “-WS“ switch) to a line printer. EDAS
assembler listings print 56 lines per page and send a form feed at the
conclusion of the 56 1lines. If you are generating a listing output and a
properly paged display 1s desired, it is suggested that you set your paper to
begin printing at the sixth line from the top of the page (which assumes
paging parameters set at 56 print lines and 66 lines page length = the
default). This will provide five blank lines for a top margin, and five blank
lines for a bottom margin.

If you are using other than 11* form paper, use the EDAS ~command “<1>*
te alter the paging parameters to suit the specifications of your printer.

Switch =NC

Conditional assembly (see the chapter on ASSEMBLER PSEUDO-0PS) can
greatly ease the maintenance of programs designed to work with multiple
configurations of hardware. However, it is unnecessary to “see® the source
statements within conditional blocks that are logically “false®. This “-NC“
switch is provided to have No *®false® Conditionals appear in your listings.
If a conditional is suppressed, neither the “IF" statement nor the “ENDIF"
.statement of the "false® block will be listed.

Switch -NE

Various data declaration pseudo-OPs create a structured format for the
1isting of code generated after the first byte of the statement. These are
the DB/DEFB, DM/DEFM, DW/DEFW, and the DC pseudo-OP statements. If you want
to inhibit the expansion from the 1listing only (the code will still be
exggnged for assembly of object code), then specify the No Expansion, “-NE™,
EWILCN,

COMMANDS - ASSEMBLE
' 7-6

Editor Assembler Commands

Switch -NH

Object code files usually start off with a header record of X'@5 96 xx
xX xx xx xx xx'. The x's would be replaced with the first six characters of

the object code filename (buffered with spaces). EDAS automatically generates =

this record when writing the object code file. The DOS loader has no problem
with this record. If you would like your object code files to contain this
record, then do absolutely nothing. If you do not want to have this header
record generated, then specify the No Header, "“-NH", switch.

Switch -NL .

. S W8 WD B 4D WD . 4D

The second phase of the assembly process generates the assembler
1isting. That is the ‘only purpose it serves. If you do not want to see a
listing, then you may enter the No Listing, "“-NL", switch. This will
completely suppress phase two and shift the assembler to phase three "(if
object code generation had been specified. If you are interested in listing
statements containing errors, then you must not suppress the second phase.
Note that only the 1lines containing assembly errors can be 1listed by
specifying the "*LIST OFF" assembler directive. See the chapter on ASSEMBLER
DIRECTIVES* for further details.

The cross-reference data file is written during phase two. In order to
guarantee that the second phase is available, a cross-reference specification
will automatically override any entry of the "-NL* switch. This could be
useful during a job stream assembly (from dJob Control Language) where
selected assemblies need the cross-reference data. Thus, your JCL could
specify “-NL* for every assembly; whenever the XR option was invoked, phase
two would not be suppressed.

Switch ~NM

You have read about the powerful uses made of macros in the MACRO
PROCESSOR chapter. By now, you may have realized that the macro model code is
repeated whenever you invoke the macro. Once you become familiar with what
the macro does, you really don't need to see its expansion in your listings
every time the macro 1{s invoked. Switch “-NM" has been provided to inhibit
the listing of such expansions. If you specify No Macro expansions, only the
statements invoking the macros will be listed - the listing of the expansions
will be inhibited. In the case of a nested macro invocation, only the highest
level macro call will be listed. '

Switch =NO

Previous versions of EDAS, and other assemblers (are there any other?)
have used a switch designated “-NO“. Its use was to inhibit the generation of

.object code (No Object) when the assembler automatically generated the object

code. Since EDAS does NOT generate object code unless you tell it to do so

-
#

COMMANDS - ASSEMBLE
7 -7

Editor Assembier Commands

V(by'7ﬁfilespecl“, switch “-WO", or switch *-IM"), the "-NO" swiiéh‘jgs
unneeded. There are those "old dogs" that cannot learn new tricks. Therefore,
. switch 2=-NO" has. been. included: just in case :you have "'the habit of entering,

-NU. However, it does absolutely NOTHING!

An alternate use can be made of the “-NO" switch when operating EDAS
from Job Control Language. This was addressed in the chapter entitled,
RUNNING EDAS.

Switch =SL

If you specify “-SL", then any label starting with a dollar sign, *$",
will be suppressed from the symbol table listing and from any cross-reference
data file. Therefore, use of the ®$" as the first character of local labels
and specifying “-SL* will result in keeping your symbol table 1listings
uncluttered with local labels - especially true with the LC compiler.

Switch =WE

oooooooooo

In a long assembly, vou may want the assembler to pause the listing if
it detects an assembly error (you're bound to get some of them). The Wait on
Error switch, "-WE%, is available for that purpose. If specified, each time
the assembler comes to an error during phase two, it will pause the listing.
Any character entered from the keyboard will continue the assembly and
listing. If you choose to enter the character *C"-or "¢*, then the phase two
process will “c*ontinue without further interruption - even though additional
errors may be detected. The listing may also be paused at any time by
depressing the <PAUSE> key, momentarily. '

Switch -W0

As noted in a preceding paragraph, object code generation is specified
when “filespecl" is entered. Assembled object code is also generated to disk
if the With Object switch, “-W0" is specified. If “filespecl® has not been
entered, the prompt message:

ObJ filespec?

will be displayed. Enter the object code filespec that you want to use to
save the assembled object code command file at this time. If you do not enter
a file extension, the default “/CMD* will be assummed. EDAS will open the
file if it is an existing file and display the message, Replaced, or create
the file if it is non-existant and display the message, New file.

If you enter *"filespecl", it 1s not necessary to enter the "-W0" switch
as entering the object code filespec will activate the "-W0" switch. If the

switch, “-IM", is specified denoting an in-memory assembly, the “-WO™ switch
will be ignored.

COMMANDS « ASSTHBLE
7 =8

Editor Assembler Commands

Switch -WS

A complete symbol tablé cross-reference listing 1is available via the

“-XR* switch and subsequent processing -by the XREF/CMD program. Such a
separate process is needed in order to be able to handle cross referencing of
statements fetched from a *GET or *SEARCH file. An abbreviated printout that
contains only a sorted listing of symbols and their value is available at
assembly time by invoking the With Symbol switch, "-WS". The symbol table
listing would normally be displayed on the video display. If the “-LP" switch
was specified, the listing would be directed to the Line Printer.

Switch -XR

s

This 1is the switch option to wuse if you want to generate a complete
symbolic cross reference listing. Switch “-XR" will invoke the generation of
a reference data file used by the XREF/CMD utility (see the chapter on CROSS
REFERENCE UTILITY). The reference data file is generated during the listing
pass (phase two). If the XREF filespec is entered with the command line, this

switch is assumed to have been entered. If the XREF filespec is_not entered
with the command line, the filespec of the reference file will be prompted

for with the query,
XREF Filespec?

Respond with the filespec that you want to use to store the reference data.
If you do not enter a file extension, the default “/REF" will be assumed.
EDAS will open the file if it is an existing file and display the message,

Replaced
or create the file if if it is non-existant and display the message,

New file

Error totals

At the conclusion of phase three which generates object code, a listing
of the total number of errors will appear. This error total will be displayed
after the conclusion of phase two if object code is not generated. If you
need to get a quick idea whether or not your source code contains errors,
place an “*LIST OFF* pseudo-OP at the beginning of your code and omit any
object code generation - but do not specify “-NL®. Only lines containing
errors will be 1listed. You could also specify switch "-WE" to pause when an
error occurs [Note: If you specify -NL and do not generate object code, the

“Error totals® will be incorrect (the number of forward references plus any
other errors will be displayed)].

. COMMAMDS - ASSEMBLE
7 -8

Editor Assembler Commands

RANCH

The ranch command is used to exit EDAS. Since the ranch command
permits an address as an optional parameter, you can use it to jump to any
address (the entry to an in-memory assembled program, for instance). The
syntax of ranch is: ‘ '

BERGBRIEZRCIIVIIVE R TR BUETCIRIETREBTERFT BRI ABREEERIRREBIBRR

B {address}

|
: z
| address is the branch address entered in hexadecimal. |
| | ~y

This command is used to exit the Editor Assembler or optionally branch
to any user designated address. If a branch address is omitted, a return to
the DOS Ready command mode is performed. If a branch address is provided, the
top of the stack will contain a re-entry address to EDAS. This can benefit
the testing of a program assembled into memory. A simple “RET" instruction in
your program will return control to EDAS (provided your program maintained
stack integrity and did not crash).

Examples of the ranch command:

“B* by itself will cause an exit from EDAS and return to DOS
B 9000

This command will cause an exit from EDAS and branch to your program
at X'9¢@g' (it is hoped that your program is there).

B 5806 (Model I/III) or B 3706 (Model 1I) or B36@6 (LDOS 6.x)

This will dinvoke a Jjump to the warmer-start vector which
re-initializes EDAS and clears the text buffer.

B 3¢

This branch will cause EDAS to enter OEBUG (Model I/III or LDOS 6.x
only). The Program Counter as displayed by DEBUG can be used as the
return address to EDAS. Optionally, you can “Go* to X'5803' (Model
I/111) or X'36@3' (LDOS 6.x) or X'37¢3' (Model II).

VUIFIARLUO = DRANLD

7-19

N

i

Editor Assembler Commands

<C>HANGE

The <C>hange command performs a global modification of a string of
characters. Its syntax is: o

! |
l C /stringl/string2{/nl,n2} %
= stringl is the current string to change. ‘ {
| string2 is the replacement string for stringl. {?
|

| nl is the line number of the line preceding the |
| first change (FIND always starts at linetl). |
| |
| n2 is the line number of the last line to change. %
|

| / represents a string separator character. It |
| can be any character except a digit <p-9>, }
l .

A string of characters can be changed throughout the text buffer by this
one easy command. The global <C>hange command will change the appearances of
“stringl* to the sequence “string2“. Because <C>hange uses the <F>ind command
to locate strings and the <F>ind command always starts searching at “current
line + 1", no changes can be performed on the first line of the text buffer -
at least not with the <C>hange command. Also, only the first appearance of
“stringl* in each 1ine that “stringl" appears will be altered.

The first non-blank character following the *C*® becomes the string
delimiter (the slash character is shown above; any character except a digit
<P-9> is permitted). Null strings are not permitted (i.e. the string must
contain at least one character).

There 1s no requirement for “string2" to be the same length as
“stringl"., It can be of lesser, equal, or greater length; however, no string
can exceed 16 characters in length. If a change would result in a line
exceeding the maximum 1line 1length (which is 128), the change will not be
performed on that line and the message,

Field overflow
will be issued. The search for *stringl" continues for the remaining lines.
A line which contains "stringl" will be displayed as it exists both

before and after the change. The <SHIFT-@> key may be used to pause the
display. If you depress the <BREAK> key, it will stop further changing.

s COMMAKDS - CHANGE
7 -11

Editor Assembler Comsmands

... The entry of “nl" and *n2“ is optional. If *nl" is entered, then “n2*
‘must be entered. If neither “nl® nor “n2" is entered, then *nl* is assumed to
be the beginning of the text buffer (# or t) and "n2" is assumed to be the
end of the text buffer (* or b). Either “nl" or *n2" can be entered as the
current line indicator (.). You can enter *nl® as (# or t) to indicate the
beginning or top of the text buffer while “n2" can be entered as (* or b) to
indicate the bottom of the text buffer. One additional restriction is that if
{gu gntgn “n2* as "b® or “*", then no change will be made on the last line of
e text.

When EDAS is set to the "lower-case converted" mode (see the information
concerning the “<S>witch-case® command), both "stringl® and "string2" will be
converted to upper case characters prior to the search and replacement. If
you need to change lower case characters as well, then you must switch EDAS
to the "lower-case permitted* mode prior to issuing the <C>hange command. -7

The “tab® character 1is a perfectly acceptable character to be used
within "stringl® or “string2“. This may be useful if you want to convert a
contiguous sequence of spaces to a single tab. .

Examples of the <C>hange command:

C /MODIFY/ALTER/

This command will change all appearances of the string “MODIFY" to
the string "ALTER".

C .DEFB.DB.9,1000

This command will change all appearances of “"DEFB® to "DB* from line
109 to line 1008 (assuming inc=1f).

C /DEFM/DB/98,b

This <C>hange command will translate all appearances of “DEFM" to
“DB* from line 10¢ to the end of the text (assuming inc=1§).

COMMANDS - CHANGE
7= 12

e

4

Editor Assembler Commands

<C>0PY

The <C>opy command can be used to duplicate a 1line or block of Tlines
from pn? point in the text buffer into another point in the text buffer. Its
syntax is:

| C linel,line2,1ine3 !
{ linel is the first line of the block to duplicate. { .
{ line2 is the last line of the block to duplicate. =
} 1ined is the line number of'the line that the copied ,
} block shoulq follow. }

This command 1is useful to duplicate a line or block of lines. Note that
the command letter is the same as the <C>hange command. EDAS will interpret
the <C> as a <C>opy command 1if the first non-blank character following the
<C> is a digit <P-9>. At the conclusion of the <C>opy operation, the entire
text will be renumbered using the increment currently in effect. A few
restrictions - are 1in order. A <C>opy cannot be performed if “line3" is
interior to the block ®“linel®-*"1ine2®. *“Linel” must either precede *1ine2* or
be equal to “line2" (where "linel® is equal to "“l1ine2", the block to be
duplicated consists of the single line; “linel").

If insufficient space 1is remaining in the text buffer to duplicate the
entire block, none of the block of lines will be copied and the message,

- Text buffer full

will be displayed. The parameters (line numbers) must specify specific lines
in the text buffer. If any of the line numbers cannot be found, the copy will
not be performed and the message,

No such line

will be displayed. The <C>opy command requires all threé parameters entered
and separated with the comma (,). If this syntax is not met, the message,

Bad barameters
will be displayed.

-~

- COMMANDS - COPY
7 - 13

Editor Asseubler Comsmands.

Examples of the <C>opy command: \\
C 199,200,1009 7
This command will duplicate the block of lines numbered from 199 to
260 inclusive to also appear after line number 1004.
C t,50,50
This command will copy the block of lines from the top of the text
through line number 5¢ so that it will also follow line number 5@.
c 580,7¢¢,b
~y
This <C>opy command will duplicate the block of lines numbered from
580 to 70¢ so that they also appear after the current bottom of text.
) <
//
i

COMMANDS - COPY
7-14

Editor Assemdler Commands

<O>ELETE

The <D>elete command is used to remove a line or block of lines from the
text buffer. Its syntax is: A

|
D {linel{, 1ine2}}

~y

|
|
linel is the first line to delete. }
1ine2 is the last line to delete. |

|

This command is used to delete the line or lines specified from the
source text buffer. The characters “#" or "t" are used to indicate the
beginning of the text buffer when used for "linel". The characters **" or “b*
are used to indicate the bottom of the text buffer when used for "line2*, If
the line parameters are omitted, the current line, *." is assummed.

To aid in you 1in observing what becomes the new current line after a
line delete operation, the new current line will be displayed. :

Examples of line deletes:

D 109,500

This <D>elete will remove from the text buffer, lines 109 through 509
(inclusive).

DT,B or dt,b or d#*

This command will remove the entire source text from the text buffer.

A ranch to the “warmer* start address also will delete the entire
text.

D or d
This <D>elete command will remove the current source text line. A
Egr:gd, ".%, may also be used to indicate the current line (i.e.
D 185
This command will delete the the single line numbered 185.

.t COMMANDS - DELETE
7 - 15

Editor Assembler Commands

<EDIT

The <E>dit command is wused to invoke the line editor for purposes of
making alterations to a single text line. Its syntax is:

RN SRS RSB NIRERBLS LR RERB IRV EREIBRBBR

|
{ E {line) %
’ 1ine is the number of the line to edit. }
-ntswsaaa-nmuiaaastnca-dasa.aiaa.n-aaaannpaqi;f:ai;-z:asnxnaua

~y

This command permits the user to edit or modify any source text line.

The syntax and function of all edit subcommands are 1{dentical to those

implemented in the BASIC editor. If the optional line number 1is not entered,
the current line, *.%, will be edited.

When using the 1line editor, it will always operate in the "lower-case
permitted® mode. Therefore, you will need to pay attention to use of the
<SHIFT> key when editing upper-case characters. However, once you complete
your editing and exit the line editor, your line will be properly converted
to upper-case as required if EDAS is in the "lower-case converted® mode.

)/

Editor Assembler Cosmands

The following table of Edit Subcommands are provided for a reminder of
the common edit operations:

| |
A Abort and restart the line edit. |

Change n characters.
Delete n characters.

End editing and enter the changes. ~5

=~ g a

Delete (hack) the remainder of the line and
insert the following string. A line hacked to

- zero length will be automatically deleted when
exiting the line editor.

! 3
I l
| 1 Insert string. |
| |
| nKx Ki1l all characters up to the nth occurrence |
} of x. “ |

L Print the rest of the line and go back to the

_ starting position of the line. .

qQ Quit and ignore all editing.

nSX Search for the nth occurrence of X.

{ow Move edit pointer back one space. |

ENTER Enter the line in its presently edited form

and exit the edit mode.

ESCAPE Escape from any edit mode subcommand. The
<SHIFT-UP-ARROW> key is the escape key on
the Model I and Model III.

SPACE Display the next character of the current

|
|
|
|
;
line being edited. }

MMANDS - EDIT
7 - 17

Editor Assembler Commands

<F>IND

The <F>ind command is used to locate the next occurrence of a string of
characters within a line. Its syntax is:

8.&8883388888‘388338888883Ba‘aEIﬂﬂﬂ83838&88338383888888388838&8&

' .
F {string}

I
|
‘{ string is the character sequence to find. }
BREANANTLRT LT ARSI LT CLTSSRTRTTAPRECE LT ARARNBREBERESRARLRARNRIZIRETRRIL DN

The text buffer is searched starting at the current “line+l* for the
first occurrence of “string“. "String* can be from <1 to 16> characters in

length. If more than 16 are entered, then any characters beyond the 16th will

be ignored. If no string is specified the search is the same as that of the
last <F>ind command 1in which a string was specified (provided a global
<C>hange command was not performed after the last <F>ind command). If the
search string is found, the line containing it is displayed and the current
line pointer, *.", is updated to point to the displayed 1line. If the string
is not found, the message,

String not found

is displayed and the current line pointer, “.*, remains unchanged. A “P#* or
“Pt* command can be used to position the line pointer to the top of the text
buffer prior to use of the <F>ind command. Spaces and tabs are considered to
be part of ®string" and are thus acceptable for "finding”.

Examples of the <F>ind commnand:

FWRITEWORD

This <F>ind command will locate the next appearance of the string
"WRITEWORD®,

Assuming a <C>hange command has not been performed, this command will
find the next appearance of "WRITEWORD®.

COMMANDS - FIND
7-18

\

Editor Assembler Commands

<H>ARDCOPY

This command lists a line or block of lines on a line printer to provide
a “hard copy”. Its syntax is:

H {1inel{,1ine2}}

i
g linel is the line number of the first line to print. |
| line2 is the line number of the last line to print. }7
| ,
Iﬂ'...l.'..l'..'I‘.Ial"l"'ﬂ'III"8'....".!8.8"8'.".'8"..1

This command will print a line or a group of lines to a line printer.
EDAS will print 56 lines to a page (see the discussion of the <1> command).
If a properly paged display is desired, it is suggested that you set your
paper to begin printing at the sixth line from the top of the page.

Examples of the <H>ardcopy command:

D D D T R D D R R D D D G T W S T T W YR D D D W

H#* or HtD

This command will print the entire text buffer.
H 19d,50 -

This command will print lines numbered 180 through 5@ inclusive.
H.

This command will print the single line pointed to by the current
line pointer, “.%. ‘

This command will print the 15 lines (Model II and LDOS 6.x print 23
lines) starting with the current line. :

.t COMMANDS - HARDCOPY
7 - 19

Editor Assembler Commands _

<IDNSERT

This command is used to invoke the <I>nsert mode so lines can be input

into the text buffer. <I>nsert is somewhat similar to the "AUTO" command in
BASIC. <I>nsert's syntax is:

I {line#{(,inc)}

1ined is the number of the line that the insert
should follow.

|
|
|
|
|
|
|
Note: use <BREAK> or <SHIFT-CLEAR> to exit }

|
!
l
|
| dnc changes the current increment to "inc*.
I
l
l
=

The Insert command 1s used to insert or add text 1lines 1into the text
buffer. A1l 1lines of source text are entered with the use of the <I>nsert
comnand. After using the <I>nsert command to specify where you wish to place
new lines, the editor will generate the designated 1line number and allow the
inserting of that numbered text line. After entering the first text line the
editor will generate the next line number higher, as specified by your
increment selection. Incremental line numbers will continue to be generated
as long as there is room between lines or room left in the text buffer.

If a desired increment is not specified, the last specified increment is
assumed. Period, ".*, may be used for “line#* to indicate the current line
or if “line#* is omitted, the current line will be assumed. :

The <BREAK> key will allow you to leave the insert mode at any time. The
<CLEAR> key also performs a functional BREAK. If you have entered the <BREAK>

before depressing <ENTER> to complete the 1input of a line, that line will not
get entered into the text buffer. ,

Examples of the <I>nsert command:

I 300,5

This command will begin the text insertion to follow 1line numbered
3¢9 and also change the increment to 5.

IB

This command will append new text to the end of the text buffer. It
is identical to performing a "Pb" followed by an “I®,

COMMAHDS - INSERT
7 -2%

! ’;.m/

Editor Assembler Commands

<K>ILL

This command can be used to erase a file from a disk. It will function
identically to the DOS KILL (or REMOVE) command. Its syntax is:

|
K filespec

filespec is the filespec of the file to be erased.

| |
I |
| Note: The file extension currently in effect for “source* |
i files will be used as & default extension. |
| I
= t

~3

This command is used to delete a file that is not needed. Coupled with
use of the QUERY command, file maintenance can be implemented from within the
Editor Assembler environment. This 1is especially useful when a <Write

command results in a **DISK FULL** DOS error and you have to find a diskette
with sufficient free space.

In order to guard against inadvertant use of the <K>i1l command, a
filespec must be entered. If no extension is entered, the extension currently
in effect for source files (usually “ASM" unless over-ridden by LC or EXT=
parameters) will be assumed. If you enter the <K>i1l command without a
filespec, the message:

Bad bar&meﬁer(s)
will be displayed.

Note: The <K>i11 command is not available on Model II versions of EDAS.
Therefore, one must use the <Q>uery KILL DOS command on the Model II.

Examples of the <K>i]1 command

K OLDPROG/ASM:2

This command will erase the file, OLDPROG/ASM, from drive 2.
K TEST:@

This <K>111 command will erase "TEST/ASM* from drive f.

COMMANDS - KILL
g 7-21

Editor Assembler Commands

<L>0AD

This command 1is used to 1load a source file into the text buffer. Its
syntax is:

| I
= L {filespec} :
{ filespec is the filespec of the file to be loaded. }

) X ‘”’9

The <L>oad command will read the file denoted by the "filespec” into the

text buffer. The text file will be concatenated to any text already in the

text buffer. The file specification 1{is composed of a FILENAME, optional
EXTension, optional PASSWORD, and optional DRIVE reference as in:

FILEKAME/EXT.PASSWORD :D

If you do not enter the "filespec", EDAS will prompt you for the
filespec. If you omit the file extension (EXT), a default extension of “ASM"
will be used thus saving keyboard input and at the same time providing for a
standard file naming convention. If the "LC" parameter was specified in the
EDAS command line, then ®CCC® will be used for the default. The EDAS
parameter *EXT=ext® can be used to override the assigned default extension to
that of “ext™ (see the chapter on RUNNING EDAS). .

The <L>oad command will automatically handle a source file that is
line-numbered and headered (EDAS Version IIl format), line-numbered and
un-headered - (EDTASM Series I format), or un-numbered and un-headered (EDAS

- format, tex® gditor prepared files, or certain M-88 files). Model II source

files created with EDAS 4.0 must be converted using the CONV4AP utility. If
the file being read 15 not line-numbered, EDAS will automatically number it
as 1t loads. A line number counter 1s kept internally that advances by the
current increment for each un-numbered line read. Thus, concatenation of
source text via multiple loads of un-numbered source files will produce a
sequentially numbered in-memory text. The line number counter is reset to its

initial starting value only by a warm-start or depression of the <CLEAR>
command function.

A line-numbered file 1is interpreted as one 1in which the first five
characters of a line have the high-order bit (bit 7) set. The S5-character
line number is also followed by a terminating character (usually a space but
could be a tab with bit 7 set). A headered file 1is interpreted as one in
which the first character of the file is an X'D3'.

"ASCII* files prepared by a word processor program (i.e. SCRIPSIT) are
loadable by EDAS; however, they must be pure ASCII and must have line lengths
not exceeding 128. The only requirement is that there must be an end-of-file
character as the 1last character of the text (which would follow a carriage

22

. 7

'

sy

Q\\’/

L

Editor Assembler Cowmmands

return). The end-of-character can be either an X'lA' or a null, X'@@'. EDAS
can only convert lower case to upper case during <I>nput or <E>diting so if
you use an external word processor program, keep the Z-80 code in upper case.

Examples of <L>oad commands:

L myprog

This command will search for a file named "MYPROG/ASM" (assuming a
default extension of “ASM*) and load it into the text buffer.

~3

L theprog:l

This command will load the file named “THEPROG/ASM® f}om drive 1 into
the text buffer.

Dt,b
L newprog:2

This sequence of commands will first clear the text buffer then load
the file named “NEWPROG/ASM®* from drive 2.

.* COMMANDS - LOAD
723

Editor Assembler Commands -

<M>OVE

This command is used to <M>ove a line or block of lines from one text
buffer location to another. Its syntax is:

aﬂ'sﬁ333398“3“883“23382%833@8338388838388@333&833388833,&8&83

| - |
M linel, 1ine2, line3

linel is the line number of the first line to move.

Tine2 : is the line number of the last line to move.

| should follow after the move. I

ERBBTBAVNIBECBELREARVEETIIBETBSCRERBEZREBACURTBEBTLATEIBEBICRESRIBTRBR

This command is used to move a block of lines from one location in the
text buffer to another. A large quantity of text 1lines can be moved to a
different position in one easy operation. In the command syntax, "linel" and
*1ine2" are the beginning and ending line numbers of the text block to be
moved. “Linel® and “line2® are permitted to reference the same line number if
only one line is to be moved. “Line3“ is the line number of the line that the
text block will follow after the move. The 1line number references must be
offset by commas “,". Your line number parameters must specify existing lines
in the text buffer. If any of the entered line numbers are non-existant, the
message,

o such Vine
will be displayed.

“Line3" is not permitted to equal "l1inel® or “1ine2* as that would
represent an illogical move operation. “Line3* is not permitted to be a line
interior to the range “linel" through "“1ine2® as that would also be an
11logical operation. The message, .

Bad parumeter(s)
will be issued if your input violates any of these conditions.

The block of text to be moved is stored temporarily in the spare text
region. If this region is not large enough to store the block, the message,

Text buffer full
will be issued. Try moving the block in smaller segments.
Upon completion of the move, all lines in the text buffer will be
renumbered starting from 100 and incremented according to the line increment

COMMANDS - MOYE
7 - 24

Jine3 is the number of the line that the block ~3

~TN

{7

Editor Assembler Commands

currently in effect. Renumbering is absolute]} essential to perform proper
operation of Editor Assembler commands and so it is done automatically.

Examples of <M>ove commands:

----- - - - - - - -

M 500,90¢,1510

You desire to move the block of text starting at line 589 and ending
at line 99¢ to follow line 1516. This command will perform the
desired operation.

3

. COMMANDS - MOVE
7 - 25

Editor Assesbler Commands

RE<N>UMBER

This command is used to re<N>umber the lines of text in the text buffer.
Its syntax is:

B T Y Y T P T P Y TP T T

N {line{, inc}}
Tine is the new first line number.

inc js the new 1nérement.

~3

The <N> command is used to renumber the lines 1in the text buffer. The
first line 1in the buffer 1is assigned the number specified as *line*. If
“line" is not specified, it defaults to @Pl@@. The remaining lines in the
buffer are renumbered according to the increment “inc* or the previous
increment in a re<N>umber, <R>eplace, or <I>nsert command if the increment
was not specified. The current line pointer, ©“.%, points to the same line as
it did before the re<N>umber command was used, but the actual number of this
line may be changed.

Examples of line re<N>umber1ng. -

N
This command will renumber the text to start with line nuuber 194.
The previogus increment in effect will be used.

K5
This re<N>umber command will renumber the text to start with line
number 5. It also uses the previous increment.

N1g,5

This command will renumber the text to start with line number 1@. It
changes the line increment to a value of 5.

p&mﬂ Ma‘& . Eug'pm gm

A A 25 Y S

.-

—

~

Editor Assembler Commands

<P>RINT

The <P>rint command 1is used to display a line or block of lines to the
video display. Its syntax is: ‘

|
% P {linel{, 1ine2}} }
l 1inel is the number of the first line to display. i
| 1ine2 1s the number of the last line to display. rv
|
».

The <P>rint command will display a 1ine or a group of lines on the

monitor screen. The current 1line pointer, ".", 1is updated to point to the
last line displayed. '

If *®linel" is entered without entering "“line2", then only *linel® will
be displayed. If neither “linel” nor "line2" are entered, then the current
line plus 14 additional 1lines (total of 15) will be displayed (23 total lines
will be displayed on the Model II).

Examples of <P>rinting lines:

P#* orpP.t,b

$

This command will display all lines in the text buffer. You may use
the <PAUSE> function to temporarily halt the display from scrolling.

P 100,560
This command displays lines 1¢@ through 5@@ inclusive.

This command will display the the line pointed to by the current line
pointer. Only a single line will be displayed.

This command displays 15 lines (23 on the Model II) starting with the
current line. The <P>rint command operates in a screen scroll mode.

. COMMANDS - PRINT
- 7 - 27

Editor Assembler Commands

<Q>UERY

On the Model I or III, this command can be used to obtain a directory of
files stored on a disk. Under LDOS 6.x or on the Model II, <Q>uery is used to
execute & DOS command. Its syntax is:

BERERARBTBTED L ETTEIBTERETETLIV RSB ZABICLRACLLECBTBRARTIRTBIE LIRS

Model I/III
Q{d{/ext}} |
d is the drive (8-7) for which a directory
display is desired.
/ext is an optional “part-spec® file extension used 3
to display only files matching the “ext".

o gman D D AP B G ED K ER D WD N W D AP WD B9 T R D W ED D €D A KD OO T D 4D B GB €B €3 X3 G U O D Wh B 0D ¥ G0 €D G3 D €D .

H LDOS 6.x or Model 11 |
| Q DOS=-command |

DOS-command can be any DOS commend except COPY or BACKUP
| ‘ |

R CREERREESGRETERR ST EBR AT R VE LRSI ETIBRAVBRATABTERTERR

With Model I or III, this command is used to display a directory from
the designated drive. If a drive number 1is not entered, drive @ will be
assummed. The “part-spec® optional entry can be useful to. isolate the
directory display to select only those files matching a particular class. For
example, if you only want to display the names of “/ASM" files, the part-spec
extension should be used.

, Under LDOS 6.x or on the Model II, <Q uery is used to interface with
the DOS while in the evironment of the Editor Assembler. Any DOS command can
be accessed. It is recommnended that you not attempt to access the “COPY¥ or
“BACKUP* commands due to the possibility of overwriting the Editor Assembler.

IMPORTANT: NEVER DEPRESS <BREAK> ON THE MODEL II DURING A DOS
COMMAND EXECUTION. TO BREAK ANY DOS COMMAND, USE THE <ESCAPE> KEY.

Eiamples of <Q>uery commands:

Q DIR

This LDOS 6.x or Model II <QPuery command will list the diskette
directory to the display device.

Q1/ccc

This Model I or Model III <Qduery command will display the names of
all LC source files stored on drive 1.

CONNDS - QUERY

7-28

R

\/‘

Editor Assembler Commands

<R>EPLACE

This command can be used to replace a specified text line and
automatically enter <I>nsert mode. Its syntax is:

I
= R {1ine(, inc}} '

|

=
line js the number of the line to repiace. i

- ~3

| imec is the new increment to be used. |

I |

= =

The <R>eplace command only replaces the one 1line specified and then
enters <I>nsert mode. If “line" is omitted, then the current line is assumed.
If "line* exists, it is deleted and then <I>nsert mode is entered starting
with that line number. If “line" doesn't exist, <I>nsert mode is entered just
as if the <I>nsert command were invoked. If "inc" is not specified, the last
increment specified by an <I>nsert, <R>eplace, or redN>umber command is used.
The current line pointer, ".“, is always updated to the new current line.

If during subsequent INPUT of lines, the error message:
No more room

is issued, it means that a line numbered “current® + “inc" already exists. It
is suggested that you renumber the lines and continue your insertion after
ascertaining the new line number assigned to the “current” line.

Examples of <R>eplace commands:

L L L L L X L L L LYYy Yy

This command will replace the current line.
R 109,10

This <R>eplace command will start replacing lines beginning at line
numbered 199 and enter <I>nsert mode with an increment of 1@.

R 108

This command will start fep?acing at line numbered 109 using the last
specified increment.

: COMMANDS. ~ SERLACE
T s AR

Editor Assembler Commands

<S>WITCH CASE CONVERSION HMODE

This command is used to toggle the "case conversion mode" of EDAS. It
will either permit the acceptance of both upper case and lower case, or
invoke the automatic conversion of lower case to upper case where required.
Its syntax is: . oo

£

! !
I : '
| There are no parameters or options. {
|

;| -

RBRBTERIRRLSECETR TR SATIATTRTREIRNSREALST ARSI DBRGEVBEEBBAVRAIIRBBRIR f?

Command <S>witch will toggle the switch-case conversion of lower case to

upper case. If your computer supports the display of lower case, this feature
will be of great benefit. Two modes are available:

1. Lower case accepted: This mode permits entry of either lower case or
upper case. Your input is preserved in whatever case it is entered. EDAS is
suitable as a text editor in this mode. This is the mode used when entering
LC C-language source text. «

2. Lower case converted: This mode permits entry in either -upper case or
Tower case. All lines are converted to upper case during <I>nput mode or when
exiting the <E>dit mode. This mode should be used to input assembler source
text. While in the lower case converted mode, the following conversion
behavior is exhibited:

Character strings within single quotes are kept 1in lower case if

entered in lower case. This will ensure that your string declarations
are kept intact.

Characters entered following a semi-colon are kept in lower case if
entered in lower case. This permits the entry of comments 1in lower
case which makes your source text much more “readable.

On entry to EDAS, the “lower case converted® mode is activated. Each

entry of an “S$" command will switch (toggle) the case mode and an appropriate
message will be displayed.

Lower case permitted - for full lower case
Lower case converted - for upper case conversion

Since the <I>nsert command mode converts to upper case, the <F>ind and
<C>hange commands utilize the <I>nsert input and will also convert to upper

case. You can <F> or <C> 1lower case by using t
Y orer case o o y g the case switch toggled to

?

COMMAMDS - SWITCH CASE

7 -3

Editor Assembler Commands

<T>YPE

This command can be wused to print a line or block of lines on a line
printer. In contrast to the <H>ard copy command, <T>ype will omit the line
numbers. Its syntax is:

l
T {linel(,1ine2}}

linel is the number of the first line to print.
1ine2 i{s the number of the last line to print.

0 —————
-}

The <T>ype command prints a line or block of 1lines onto the Line
Printer. The current line pointer, *."*, is updated to point to the last line
printed. This command is much like the <H>ard copy command, except line
numbers are not printed. Only the source text 1s printed. If a properly paged
display is desired, it is suggested that you set your paper to begin printing

at the sixth line from the top of the page (for additional information on

paging, see the <1> command).

Examples of <T>ype commands:

For examples-.of the <T>ype command, see the <H>ard copy command. The two

commands function 1identically except that <T>ype omits the line numbers
during the printing. :

COMMANDS - TYPE
7 -31

Editor Assembler Commands =

HEMORY <U>SAGE

This command is used to display certain statistics concerning the memory
usage of your source text buffer. Its syntax is:

881a38“88333_38383‘83883.88338‘888888283‘38'888.8‘38‘8‘»8"88"838838‘8
o T “ ; « L : ot

|
U

} There are no parameters or options.

ERRIRBBTRURLBBEBAVERBIBAVBREBEFRBBDAVBRTICEDBEIILEERIGZRIDE DO MEIVAR

This command will display the number of bytes of text buffer in use, the’
number of bytes spare and the first address available for assembly to memory
(note that if macros are being used, the macro storage area extends from the
address shown as the first address available for assembly and you will have
to experimentally choose & higher address for an "in-memory* assembly).

This command is wuseful to ascertain requirements for storing the text
buffer to disk. Note that a disk file, which 1is written in ASCII
(un-numbered), will contain two (2) bytes less per text 1line. The 2 bytes
represent the line number used in the storage format of text in memory versus
text in an un-numbered ASCII file.

It also 1s useful when assembling into memory. Since the Assembler will
not permit you to overwrite it or the text buffer, you will have to “ORG"
your program 1in the free text buffer area. The first available address 1is
output by this command (remember the note on macro storage).

An example of <U>sage output is:

30622 bytes spare
PPoPP bytes in use
8863H is the first freée address ™ -~ v« v v

Editor Assexbler Commands

<YIEW

This command is used to 1list (display) a file on the video display
device. Its syntax is: :

|
V {filespec} I

1
filespec is the filespec of the file to be displayed. |

This command can be used to display any file without actually loading
the file into the text buffer. No attempt 1is made to convert non-ASCII
characters prior to displaying. Therefore, if the file is not an ASCII file,
strange characters may be displayed. Use the <V>iew command primarily to-
display source files. '

The output may be temporarily stopped by depressing the <PAUSE> key or
may be interrupted and cancelled by depressing the <BREAK> key.

If you do not enter the filespec with the command line, it will be
prompted for‘with the query:)

#1lespec?

If you do not enter a file extension with the file specification, a
default extension of "ASM* will be used unless the “LC" parameter was
specified when entering EDAS. *LC* redefines the default specification to
“CCC*". Note that the default extension could also have been changed via the

“EXT=ext" parameter.

‘ COMMANDS - VIEW
7 ~ 33

Editor Assembler Commands-

<W>RITE

The <Wrrite command is used to save the contents of the text buffer into
a disk file., Its syntax is:

. |
W{+}{#}{$}{!hh} {filespec)

filespec is the filespec to be written.

| + is an optional switch to write a source file |
created with a header record.
~3
| # is an optional switch to write a source file |
with line numbers.
| § is an optional switch to write a source file |
| with line numbers terminated by X'89'. :
|
| thh is an optional switch to specify a end-of-file |
| terminating byte of X'hh' other than X'lA‘. |
} Use “!!*" to suppress the E-0-F byte. {
% 3 6 40 TR D R OB unuun-munumuna-auun--n--uuuuunu-n-nuuu------n--n--fnnu--

This command will write the text buffer to the ' file dernoted by Tilespec.
If no filespec is entered, you will be prompted for 1t in a manner identical
to the <L>oad command. If you omit the file extension (EXT), a default
extension of "ASM" will be used thus saving keyboard input and at the same
time providing for a standard file naming convention. Remember, if you had
specified “LC* or “EXT=ext" when you entered EDAS, the default source
extension will be "CCC" or "ext® respectively.

The switches are used for compatibility in writing source files for use
with other editors such as the M-8@¢ editor, EDIT8@, earlier versions of EDAS
(3.4 and 3.5), and EDTASM. If more than one switch is used, the order is
irrelevant. Use of the switch “+* will enable creating a file with a file
header record (X'D3' followed by a 6-character filename).

If the source file is to contain line numbers, then the "#* switch
should be used. This will write line numbers as five ASCII digits with the
high order bit (bit-7) set. The 1line number is terminated with a space
character (X'2¢'). The switch "$" generates a line numbered file the same as
the "#* switch; however, the terminating character 1is written as a tab with
bit-7 set (X'89'). Some versions of FORTRAN require the source file to be 1in
this manner; thus, EDAS could be used to prepare source files for FORTRAN.

Finally, the “!hh" switch can be used to specify an end-of-file byte to
be other than the standard X'lA' normally used by EDAS. For instance,
specifying “!¢@" will change the E-0-F byte to X'0@', the value used by

COMMANDS - WRITE
7 - 34

e

P

Editor Assembler Coamands

SCRIPSIT. If instead of the two-character hexadecimal value, you enter a
second exclamation point as in *“!!*, then no E-Q0-F byte will be written.
Observe caution as EDAS can only properly load a file if the E-Q-F byte is an
X'1A' or an X'0@'.

If the file denoted by “filespec” is non-existant, a file will be
created and the message,

New File

will be issued. If the file denoted by “filespec* 1is an existing file, it
will be replaced by the write operation and the message,

Replaced

will be issued. YOU WILL NOT BE GIVEN AN OPPORTUNITY TO CANCEL A WRITE
REQUEST ON AN EXISTING FILE. Know what you are doing.

~y

Examples of <Write commands:

W parmdirl:3

This command will write the current contents of the text buffer to
the file, PARMDIR1/ASM:3

W g0 doparmijcl:ﬁ

This~ <W>rite command will save the text buffer in the file,
DOPARM/JCL :6. An E-0-F byte of X'0@' would be used instead of X'lA'.
Thus, EDAS was used to edit a Job Control Language file.

.t COMMANDS - WRITE
7 -3

Editor Assembler Commands -

EXX>TEND

This command can be used to increase the area of the text buffer by
eliminating the assembler. Its syntax is:

R S e A e S R R S S SRS EEBNr SN ERR T IVDRABMERNMEE

X

I
| |
| |
: There are no parameters or options. }
=B =

This command can be used to extend the text buffer area by moving théi
text over the Assembler portion of EDAS in memory. Approximately 82¢@ bytes
are gained by this extend operation. It 1s useful if you are editing a large
body of text or are dealing with a large assembly language source program.
Since the capability of direct assembly from disk files is a function of the
EDAS Editor Assembler, editing can be performed without the Assembler module
of the program in memory. You, of course, will have to exit and reload the
Editor Assembler for further assembling.

Another reason for the use of e<X>tend, 1is to handle those EDAS 3.5
files that now exceed the maximum text buffer size of EDAS version IV. It is
suggested that you keep your source files in smaller modules. The *GET
capability provides great power 1in handling multiple source files in an
assembly stream. You will thus find that a program made up of smaller modules
of code is perhaps easier to maintain and just as fast to assemble.

Following the entry of the <X> command, the prompt:
Are you sure?

will be displayed. This is provided as a safeguard in case you inadvertantly
enter the <X> command. You must respond <Y> 1in order to.complete the
extension. Entry of any other character will abort the extend operation. A
response to the query with a <Y> will move the current contents of the text
buffer and reset all pointers to their proper value. Once the e<X>tend
command 1s invoked, both - it and ‘the <A>ssemble command will 'be made
inoperative.

-

COMMANDS - EXTEND
7 -3

-

\
2

Editor Assembler Commands

<1> (ONE)

This command can be used to display or alter the current page formatting
parameters of EDAS. It is not supported under LDOS 6.x.or Model II (use Q
FORMS). Its syntax is:

} 1{nl{,n2}} }

’ nl * 1s the number of lines to print per page. !
~5

} n2 - 1is the page length in lines. |

I

This command can be used to alter the two paging parameters used by
EDAS. One of these parameters specifies how many lines to print on a page
before issuing a form feed. The other parameter 1is specified in the printer
Device Control Block (DCB) and represents the maximum printing lines on a
page. EDAS initializes with “nl*" set to 56 (57 on a Model III since a Model
II1 starts counting from 1). Thus, 56 lines will be printed before sending a
page eject. The value of the page length stored in the *PR DCB (X'4028' Model
I and III) 1is used for the “n2* value. Either value can be changed with this
command. If no parameter 1is entered, then the current values will be
displayed.

Examples of the <1> command:

This command will set the maximum page length to 51. The number of
printed lines until a form feed is generated will be set to 46.

This command will display the current values for lines-to-print and
lines-per-page. The display will look like:

90056 90d66 (Model I and Model II)
$0as7 ¢gege7 (Model III)
. COMMANDS - ONE

’ 7«37

Editor Assembler Commands

MESSAGE TO JOB LOG ®."

BT TIETCRBTLTIDRNBTTTREBR

The dot ".* command can only be used with LDOS, to post a time-stamped
message to an active job log. There will be no visual indication of the
event. Its primary utility will be with Job Control applications of EDAS. An
example of a message post would be:

« Starting assembly of PARMDIR
SCROLL UP <UP-ARROW>

EXXTVBUBLTIBRTBIBVEBED

The “SCROLL UP* command displays the line preceding the current line ard
updates the current line pointer, ".%, to point to the line displayed. If the
current line is the first line in the text buffer, it {s displayed and period
“.» premains unchanged. “SCROLL UP" is an immediate command and must be the
first character of a command line in order to be interpreted.

SCROLL OOWR <DOWN-ARROW>

BERVRVISI/USDASILAARDTBBRARS

The “SCROLL DOWN* command displays the line following the current line
and updates the current line pointer, “.", to point to the 1ine .displayed. If
the current 1line is the last 1line 1in the text buffer, the last line is
displayed and period *®." remains unchanged. “SCROLL DOWN" is an immediate
command and must be the first character of a command line to be interpreted.

CLEAR SCREEN <SHIFT-CLEAR (Model I/III)> <Fl (Model II)>

UERABBREVIETRALILILICRLIIRIDSILEIBLEIRIBVBBEILRABIBT BRI BRABEE

The <CLEAR> key is used to perform a functional clear screen and display
of the initial entry message. The *®CLEAR" function alsoc performs a <BREAK>
operation but cannot be used to interrupt output. This function is identical
to a warm-start of EDAS and will reset automatic 1ine numbering to its
intital value of 10@.

On the Model I and Model III, the <SHIFT-CLEAR> key performs the “clear"
function. The <F1> key is used on the Model II. Consult your DOS manual for
the appropriate key under LDOS 6.x.

CQMMAHDS -7DISg§AY CONTROL

L

K«

\7

Editor Assembler Commands

PAUSE <SHIFT-@ (Model I/II1)> <HOLD (Model II)>

The <PAUSE> key is used to pause the computer during a display, during
any assembly, or Editor Assembler printing. When a pause is sensed,

depression of any key except <PAUSE>, <SHIFT>, or <CONTROL> will continue the
operation paused. It is only necessary to momentarily depress the key as a

- pause function will be held pending as soon as the key is pressed. On the '

Model I and Model III, the <SHIFT-@> key is used as a “pause". The <HOLD> key
is used for this purpose on the Model II. “ '

7
BREAK

The <BREAK> key is wused to terminate the <I>nsert mode. It is also used
to abort an assembly in effect. It will also abort any disk I/0 operation or
display 1§§ting. A detected <BREAK> will return EDAS to the command ready.
prompt, ">".

PAGE FORWARD <SHIFT RT-ARROW (Model I/III1)> <FZ (Model 1I)>

The <SHIFT-RT-ARROW> key on the Model I and Model III is used to advance
the display by 15 lines. The <F2> key is used on the Model II to advance the
display by 23 lines. This command is similar to the <P>rint command except
that the display screen is cleared prior to displaying the 15/23 lines of
source text.

USER PATCH SPACE - ZCHMD

A 50-byte patch space is available for your use. A vector pointing to
this space is located at X'58@9' (Model I/III), X'3609' under LDOS 6.x, or
X'37@9' (Model II). If you place a routine in this space, it can be executed
by entering a <Z> at command ready. The space currently has a RET instruction
as the first byte which is used to return from the <Z> command.

. COMMANDS - DISPLAY CONTROL
7 - 39

Cross Reference Utility

XREF

~ The MISOSYS XREF utility is used to generate a cross reference listing
of symbols used in your source code. Its syntax is:

XREF filespec/REF {(LEN=val,PAGE=val,LINES=val,EQU,LIMIT)}

| filespec is the specification of the reference data
file generated by the -XR switch of EDAS. If
the file extension is omitted, “REF" is used.

LEN is the length of your print line (the default
, value is 8¢).

PAGE is the maximum number of lines per page (the
default is 66 for Mod I & II, 67 for Mod III).

| |
LINES is the number of lines to print on a page (the
default is 56 for Mod I & II, 57 for Mod III).

| |
EQU is used to generate a file of EQUates instead
of the cross reference listing.

| : |

LIMIT is used to limit the file of EQUates to those
symbols containing a special character.

Note: the format of ®“value" is PARM=ddd or PARM=X'hhhh'.

PAGE and LINES are not supported under LDOS 6.x or Model II |

There are no parameter abbreviations.

ABRABEDRFAEAXZTIZZRITFI USRIV IIZTIDITADZXTARIIIXNTIATITINIRTZZTER

The XREF/CMD utility generates a symbolic cross-reference listing which
includes a sorted list of all defined labels, the file of origin of the
definition, the line number of the definition, the value of the definition,
and the line numbers of all statements referencing the label. If “*GET* or
“*SEARCH" files are used in the assembly process, XREF will even identify the
filename of the file containing the references. XREF will not identify
unresolved 1labels. Therefore, make sure that either all labels are resolved
during the assembly that generates the XREF data file, or you do not need the
lzne numbers of those unresolved references appearing in the cross reference

isting.

XREF can also be used to generate an assembler source file of EQUates of
all symbols used in the program being assembled or a subset of all symbols
used. The LIMIT parameter is used to limit the EQUates to only those symbols
having at least one special character in the symbol name.

UTILITY - XREF
. 8 -1

Cross Reference Utility

XREF uses, as input, the reference data file which 1is optionally
generated by the =XR switch during the LISTING pass of EDAS (phase 2). XREF
cannot function without this data file. You need not enter the file
extension, /REF, as it will be assumed if omitted.

The XREF command line parameters enclosed 1in parentheses are entirely
optional. The may be used as follows:

LEN

This parameter controls the printed line length during the XREF listing.
If omitted, a value of 80 is assumed to deal with 8@-colum line printers. If
you are using a wide-carriage printer (typically 132 colums), then XREF cap,
use the entire print line by specifying the parameter as:

XREF (LEN=132)
PAGE

. This parameter controis the page size. A vaiue of 66 lines per page (&7
on the Model III due to its line counter starting from 1 instead of @) is
used. If your paper 1{s shorter or longer, you can respecify the page length
from the command line. For instance: =

XREF filespec (PAGE=51,LINES=41)

will set the page length to 51 lines per page and initialize to print 41
lines.

This parameter controls the quantity of lines printed on a page before a
page eject (form feed) is generated. If omitted, a value of 56 printed lines
is wused. You can respecify the quantity of lines you want printed by a
command similar to that shown for the PAGE parameter.

EQU

This parameter controls the generation of the EQUate file. If this
parameter is entered, then the cross reference 1isting is suppressed and a
source file of symbols equated to their value is generated. The filespec used
to write the EQUate file will be constructed using the filename and drive
specification of the “/REF® file. A file extension of */EQU* will be used. If
this parameter is entered, then LEN, PAGE, and LINES will be ignored.

Symbols defined by the "DEFL®" pseudo-OP will be maintained as DEFL's in

the EQUate file. The file will be created without a header and without line
numbers - it will be a standard EDAS Version IV file.

UTILITY = ARer
. 8 -2

—~

“-".;}/

Cross Reference Utility

This parameter controls what symbols are written to the EQUate file. If
entered 1in addition to the "EQU" parameter, 'then the EQUate file will be
limited to those symbols that contain at least one special character (a
character other than A-Z, §-9).

Cross-Reference Listing

The 1listing requires two passes through the data file. This is“done to -

conserve memory space so that listings for extremely large programs can be
processed. If you are generating the cross reference 1listing, three
informative messages will be displayed prior to generating the printer
output. “Building symbols declared® will be displayed during the first pass
through the data file as XREF creates a table of information pertinent to all
symbols declared. After this table is completed, the message, “Sorting symbol
table* will be displayed. The operation being performed is self evident. A
second pass through the REF data file will be made while the message,
“Building symbols referenced® is displayed. This pass is used to create a
second table of information pertinent to all references to symbols.

The 1isting will contain a heading on each page. This heading is
composed of - the system DATE and TIME, the TITLE extracted from the source
code if a TITLE pseudo-op was used in the assembly process, and a page
number. The heading line requires a minimum of 74 colums. Thus, if you
specify a LEN parameter of less than 74, the heading will either wrap around
on your printer or be truncated - depending on how your printer handles
longer lines. The reference columns will include:

The filename of the file containing the declaration of the symbol. If
the symbol was declared by a statement located in memory, the ORIGIN will be
listed as “SMAIN*. Otherwise, the ORIGIN will list the filename of the “*GET
filespec® or “*SEARCH library".

Symbolic Label

This column contains the symbol name of the declaration. If the symbol
was defined by a “DEFL" pseudo-OP, a plus sign, “+", will precede the symbol
name to denote this fact. - references will only be printed against one of
the label definitions; however, all declarations will be shown. If the symbol
name was actually the name of a MACRO, it will be prefixed by a pound sign,
“#* and the “"value" field will be irrelevant. The symbolic labels are sorted
in ascending alphabetical order.

. UTILITY - XREF
8=~-3

Cross Reference Utility -

This column contains the value of the symbol as determined during the
assembly process. If the symbol shows a DEFL definition, the value will be
the first defined value. If a MACRO name is indicated, the value shown is
actually the storage location of the MACRO prototype and model - it will
serve no useful purpose.

ooooo

This column contains the line number of the source line declaring or
defining the symbol. The symbol is defined where the symbolic name is used jn
the label field of a source statement.

This column contains the filename of the file containing a reference to
the label. If the label is referenced from a statement resident in memory,
then the filename will be listed as SMAIN. Otherwise it will be the Tilename
field of the *GET filespec pseudo-OP fetching the file or the 1library
filespec if a *SEARCH was involved.

.—

Line# of References

A1l references to the label will be listed 1in this field. It will
contain the 1ine number of the source statement containing the reference. All
of the references listed on a print 1line will be contained in the file
identified under the usage column. Whenever the Usage file changes, it will
cause a new line to be generated in the listing.

Statistics

At the cenclusion of the cross reference listing, two additional items
of information are listed. The quantity of symbols declared is listed along
with the quantity of references associated with those declarations.

/

(%4

Tape-to-Disk Utility

TTD

The MISOSYS TTD utility 1is wused for transferring to disk, a source
cassette file that was created with the Radio Shack EDTASM, Microsoft

EDTASM+, or other compatible editor assembler. TTD is not supported under
LDOS 6.x or on the Model II.

To execute the TTD utility, at your DOS ready, simp]j use the syntax:

i !
I TTD {:d} !

I |

TID 1s used to transfer a source cassette file to disk. The filespec

~will be constructed using the filename found on the cassette tape file and

the file extension “/ASM*, If the optional drive specification, "*:d® (where
*d" 1is the drive number of the drive receiving the disk file), 1is entered
with the TID command line, it will be used in the construction of the file
specification.

TTD will prompt you to ready the cassette via the message:

Ready cassette and <ENTER> -=> for a Model I
Ready cassette and enter <H,L> -> for a Model III

The <H,L> entry for Model III users will select either High speed cassette

operation (150¢ baud) or Low speed cassette operation (508 baud). Respond to
the prompt by depressing the <ENTER> key if you are a Model I user, or the
correct baud rate character if you are a Model lII user.

The cassette source file will be transferred to disk. TID will then
return to DOS.

UTILITY - TTD

‘Y

g

»

~

Error Messages

GENERAL

EDAS Version IV recognizes three types of errors. These are:

.
B AR R R R R I S RN e RIS AR IR ITRIIRISARI AR REX

Command This is an EDAS command syntax error. The
error message is displayed and control is
returned to command mode.

|
| |
| |
| |
| DOS This. is an operating system disk I/0 error. |,
| The error message is displayed and control is | *°
i returned to command mode. }
| Assembler These errors may occur while executing an |
| Assemble command. There are three types: |
} terminal, fatal, and warning. I

AR I NS SRR ITITTISITRITTIIIISRNTITIRITER

DOS disk I/0 errors can also be received during an assembly. When a disk

1/0 error occurs, the assembly will be aborted and control will be returned
to EDAS command ready.

Three different types of assembler errors can occur. The types relate to
the severity of the error. These types are:

ﬂ-aﬁ"."ﬂ..IDB.'H:“‘I':ISS'I"IIBII'.I."II"'.IIRSI:II:I..'HI.

Terminal Assembly is terminated and control is returned
to commnand mode.

| Fatal Processing of the line containing the error is .
| immediately stopped and no object code is

generated for that line. Assembly proceeds

| Warning The error message is displayed and assembly of
the line containing the warning continues. The
resulting object code may not be what the

| programmer intended.

I

|
|
|
|
|
with the next statement. {
|
|
|
|
I

- MESSAGES.
1% -1

Error Messages
Fo1low1ng is a list of all error messages and an explanation of each;

COMMAND ERRORS

1.> Buffer full

There is no more room in the text buffer for adding text.

2.> Bad parameter(s)

- D €D WD D D Y D D S T

Any command 1line not entered according to the syntax appropriate'for
that command will generate this error message. Also, if you attempt to load a
file that is not a valid source code file, this message may be displayed. The
<K>111 command requires entry of 2 filespec, which if omitted, will also
display this error message.

3.> Illegal command

The first character of the command line entered does not specify a valid
Editor Assembler command.

4.> Line number too large

Renumbering with the specified starting line number and {increment would
cause line(s) to be assigned numbers greater than 65529. The renumbering is
not performed. This message would also be displayed 1if you attempted to
INSERT a line with a line number exceeding 65529.

. 9.> No room between lines

The next 1line number to be generated by INSERT or REPLACE would be
greater than or equal to the line number of the next line of text in the edit

buffer. The increment must be decreased or the 1lines in the buffer
renumbered. -

6.> No such line

A line specified by a command does not exist. The command is pot
performed.

HEJDABES
. 10 -2

\vkzj)

J

-

-

Error Messages

7.> No text in buffer

A command requiring text in the buffer was issued when the text buffer
was .empty. The commands <L>oad, <ID>nsert, <Qduery, ‘<S>witch, ranch,
<U>sage, <V>iew, e<X>tend, <K>ill, Dot <.>, <Z>, and ONE <1> can be executed
when the text buffer is empty. Al other commands require at least one line
of text to be in the buffer.

§.> String not found

The string being searched for by the <F>ind command could not bé? found .

between the current line and the end of the text buffer. This message will
also be displayed at the completion of a global change command.

DOS ERRORS

EITTUARIT=E

.The standard DOS error messages will be displayed if the DOS returns an
error code after return from any disk operation. Consult your DOS operating
manual for explanations of those errors. During most error handling, the
abbreviated form of the error messa?e will be displayed. If an I/0 error is
detected during an assembly, the long form of the error message will be
displayed. This provides an observance as to which file was affected by the
1/0 error.

Any attempt to load or *GET a file that has a line Tlonger than 128
characters will result in “Load file format error®.

TERMINAL ERRORS

1o Memory overlay aborted

During an assembly to memory, a block of code was assembled that would
load into a memory region other than the spare text buffer area. Your program
will not be permitted to load to an address below the end of the text buffer
or above the symbol table. Use the Usage command to locate the first
avaiiable memory address. If you are using MACROs, the first available memory
address ~ is indeterminate as the MACRO processor uses the memory area

immediately following the text buffer for a MACRO model and string buffer
storage area.

2.> Symbol table overflow

CR I A S B T S G

There is not enough memory for the assembler to generate your program's
symbol table. You have three options: Prod

.t MESSAGES
1¢ - 3

T Y e N

Error Messages

1.> Remove comment 1lines and/or comments following Z-80 code
operands. This may free up enough space to perform the assembly.

2.> Divide your prdgram into two or more modules and assemble them
using the *GET filespec directive.

3.> Extend the text buffer area, expand your source, then assemble it
using the *GET filespec directive.

3.> *GET or *SEARCH error

nnnnnnnnnn D D G D D T R

A "*GET filespec* or "*SEARCH library" assembler directive was found in
a library member. A searched library cannot have *“*GETs" or nested
"*3SEARCHes". /3

4.> Member definition error: filespec(member)

This 1s a result of a fetched *SEARCH member not resolving the symbol
reference invoking its fetch.

FATAL ERRORS

1.> Bad label

- O D EI AT T D)

The character string found in the Tlabel field of the source statement
does not match the criteria specified under ASSEMBLY LANGUAGE INFO - LABELS.

2.> Expression error

D AR T D D D T D WD L D T

The operand field contains an il1-formed expression.

3.> Illegal dddressing mode

The operand field does not Specify an addressing mode which is legal
with the specified OPCODE. “

4.> Illegal opcode

The character string found tn the opcode field of the source statement
is not a recognized instruction mnemonic, assembler pseudo-op, or MACRO name.

- 7~ MESSAGES
. 1¢ - 4

Error Messages

5.> Missing information.

LT D L LT Y Ty T T ¥ YT

Information vital to the correct assembly of the source 1line was not
provided. The OPCODE "is missing or the operands are not completely specified.

6.> Too many nested *GETs

*GET filespec nesting exceeds the number of levels supported. The *GET
will be ignored.

7.> Unclosed conditional

“y

The “END" statement or end of source was reached and an open “IF"
conditional block was still pending. Your program is missing the closing
“ENDIF*®, .

8.> ENDIF without IF

................

An “ENDIF* pseudo-op was detected without a corresponding conditional
“IF® or “IFxx® in effect. The “ENDIF* will be ignored.

9.> ELSE without IF

An “ELSE™ statement was detected without a preceding "IF* conditional
segment.

18.> Filespec required

.................

A *GET or *SEARCH directive was detected but the statement did not
contain the required file specification. The *GET or *SEARCH will be ignored.

11.> Bad parameter(s)

When output preceding a MACRO definition, it implies an error in the
parameters of a MACRO.

12.> Nested MACRO 1gnored

A macro definition statement was nested in the model of another macro.

MESSAGES
19 -5

Error Messages

13.> Missing MACRO name

The name field of the macro definition statement did not contain the
macro name. The macro will not be defined.

14.> ENDM without MACRO

..................

An ENDM pseudo-OP was detected while not in a macro definition phase. It
will be ignored.

15.> Too many parameters

.................... .
In a macro call, the number of parameters passed exceeded the number
defined for the macro. The macro call will not be expanded.

16.> Too many nested MACROs

The number of pending nested macro calls exceeds the current nest level
supported. The macro call will not be expanded.

17.> MACRO forward reference

D R D WD TR T P WD G TP T WP WD 4P DT O R) O

A macro call was detected prior to the definition of the macro. The
macro call will not be expanded since gross phase errors would result.

18.> Multiply defined MACRO

T D R P B R OB O WD T 4D G D KD TR D A T D G OB

A macro definition statement was detected for a macro already defined.
The subsequent definition will be ignored.

WARNINGS

1.> Branch out of range

The destination of a relative jump instruction (JR or DJNZ) 1is not

within the proper range for that instruction. The instruction is assembled as
& branch to itself by forcing the offset to hex X'FE'.

2.> Field overflow

A number or expression result specified in the operand field is too

large for the specified instruction operand. The result is truncated to the

MESSABES
16 - 6

N\

Error Messages

largest allowable number of bits. This error would also be output during a
global change if a resultant line would exceed 128 characters.

3.> Multiply defined symbol

The operand field contains a reference to the symbol which has been
defined in another 1line. The first definition of the symbol is used to
assemble the line.

4.> Multiple definition

The source 1line 1{s attempting to 1{llegally redefine a symbgV. The
original definition of the symbol is retained. Symbols may only be redefined
by the DEFL pseudo-0P and only if they were originally defined by DEFL.

5.> No END statement

The program END statement 1is missing. Note that if your program is
missing the “END* statement, EDAS cannot detect an unclosed conditional.
Also, be aware that if your program has a FALSE unclosed conditjonal, then
the “END*" statement will NOT be detectable - even if present.

6.> Undefined symbol

The operand field contains a reference to a symbol which has not been
defined. A value of zero is used for the undefined symbol.

MESSASES
o‘ lG'?

“3

-

Technical Specifications

OBJECT FILE FORMAT

The disk file object code format consists of a header record, an
optional comment record, one or more load block records, and a transfer
address record. The specific formats of these records are as follows:

Header Record

The file header record consists of the hex byte X'05' (record type)
which indicates the header field of an object file. It is followed by the
header length byte which indicates the 1length of the header data fol)gwing. .
The length of the header data is constant in EDAS and is six bytes. The data
is constructed as the first six bytes of the object code file name field and
is filled out with spaces if the file name is less than six characters.

Comment Record

This record 1is optional. It %5 generated by the "COM" pseudo-0OP. It
consists of a record type byte of X'1IF' folilowed by a length byte which is
the length of the comment. The comment data, itself, follows.

Load Block Record

The load block record starts with a record type code of X'0l' which
indicates it is a load block. A l-byte length 1is next. This indicates the
length of the object code data plus the 2-byte block load address. The length
is encoded as a modulo 256 value (object code length of 253 = X'FF', object
code length of 254 = X'@@*', object code length of 256 will show as X'g2').

The block length byte is followed by the 2-byte block load address which
is the address that will be loaded with the first byte of the block.

Finally the object code block immediately follows for as many bytes as
two less than the block length.

Transfer Address Record

.......................

The Transfer address record (TRAADR) starts with a record type of X'@2'.
An X'@2' is written to indicate the length of the entry point address. This
is then followed by the 2-byte entry point or transfer address generated from
the label or constant in the operand field of the assembler source END
statement. As is the case with all 16-bit .data values, the TRAADR data has
the low-order byte of the address followed by the high-order byte.

TECH INFO
. 11-1

Technical Spec1fications

SOURCE FILE FORMAT

BIITTAIEIIETBRBES

The source code file format used by EDAS has no header nor line numbers.
Headers ~and numbers are entirely optional and can be generated with
appropriate switches in the <W>rite command. The formats are as follows:

Header Record

A header record as described under “Object file format* is optionally
used for source files with the exception that the first byte is a hex X'D3'
(X'53* = with bit 7 set) to identify the file as source, immediately followed
by a 6-character name (the name length byte is omitted). Files written with
"W+* contain this header. V v

Text Lines

O G G D T W €D = OB

Text lines are written in ASCII each composed of an optional 5-character
line number (bit 7 is set), & spave, the dext Hine, ending with an <ENTER>
(X'BD'). Files written with the “W#“ command incorperate both the S-character
line number and following space.

End-of -File Mark -

The file end is indicated by an end-of-file mark of X'lA' which would be

in the first character position of a text line (or lst byte of the 1line
numper if line numbered files are used).

REFERENCE DATA FILE FORHAT

VB RLRRABRSTRRIEERIREBRBRE

The reference data file is a compressed collection of data corresponding

to each symbol definition and reference. The file contains a title record,
and definition/ reference records. The format of these records is as follows:

Title Record

The title record is always present even though the assembler source file
stream may or may not have supplied a TITLE pseudo-OP. The title record is 28
characters long. If the source files did not contain: a TITLE pSeudo-0P, the
record will be filled with spaces.

Definition/Reference Records

These records contain the data for either a symbol definition or
reference. It is composed of a filename field, a line number field, a type

TECH INFO
11 -2

Ty

Technical Specifications

field, a value field (omitted for references), and a symbol name field. These
fields are defined as follows:

Filename Field

This field will be either an eight character filename or a hex X'22'. If
a hex X'22', then the filename reference is the same as the previous record.

Line Number Field

This field contains the 1line number of the definition or refgrence
. statement in low-order high-order form. i

Twe Field

The type field contains an X'0@' for a reference, an X'@1' for a
definition, or an X'@2' for a DEFL defined symbol.

Value Field

The value field contains the defined value of the symbol. This field is
omitted for references (type field =).

Name Field

- R G D .

The name field contains the symbol name. It is terminated with a
carriage return (X'@D'). If the symbol is the name of a macro, the first
character of the name has the high-order bit set.

. TECH INFO
: 11« 3

Technical Specifications

LINKAGE TO DEBUGBING (Model I/III or LDOS 6.x only)

BHBURVSIBISVICTETSREDTITLITEIFTTBBLLTTEIT IR BTRLBERS

In order to facilitate the debugging of user generated programs, a
number of features have been built into EDAS. It provides the option of
assembling source code directly to memory. It provides a command to transfer
control to a user-supplied address (via the ranch command).

A re-entry address to the Editor Assembler has been provided. If at any
time during the debugging phase, you want to return to the Editor Assembler
without reinitializing it (which would have deleted the entire text buffer),
and are under the control c¢f a debugging utility that does not utilize memory
from X'540@' (X'32¢¢' wunder LDOS g x) to the protected HIGHS, issue a jump
command to X'5803' (X'36@3' under LDOS 6.x). Alternately, you can provide
“JP 58033H" (or JP 36@3H under LDOS 6.x) in your program as an exit and return
to EDAS. A return to the Editor Assembler will be performed and the text
buffer pointers will be maintained. If your program has maintained the
integrity of the stack pointer, a RET instruction will return to the EDAS
command prompt as the top of the stack contains the prompt address when an
exit is made via the "B"ranch command.

EDAS disabies the automatic entry to OUEBUG on <BREAK> to avoid
inadvertantly entering DEBUG by depressing <BREAK> to exit an <I>nsert or
abort an assembly. In order to enter DEBUG directly from EDAS, perform a
ranch command to address X'33°'.

TeCh IRFO
11 - 4

LC 1.1 Errata - 07/01/82
1.0 -‘cursof()

Correct the syntex of cursor() on page 4-34 and Appendix B-1 to read
cursor(col,row);

2.0 #option errormsg "~ ' : . j

Reference the additional option, "errormsg"™ on pages 3-8 and 5-1/5-2.
This option permits you to suppress the automatic display of operating system
error messages generated on file I/0 errors and generally displayed by the
DOS @ERROR routine. Suppress the display by specifying "Ffoption errormsg
OFF". The default of errormsg is ON meaning system error messages will -be
displayed. A <

3.0 foption getn] : e
Reference the additional option, "getn1" on pages 3-8 and 5-1/5-2. This ' "
option refers to the handling of the newlire character (\n) within the =~
fgets() function. According to K&R, the newline should be included in the
buffer returned by fgets(). Under LC 1.0, rewline was stripped from the
buffer. LC 1.1 has been brought into agreetent with K&R on this point. If
“#foption getnl OFF" is specified, then fgets() will strip the newline as =
under LC 1.0. If you have programs compiled under 1.0 that -require the
newline be stripped, you can either reprogram your C source to coincide with

the language as K&R specify, or you can specify the option as shown.

4.0 automatic variables

Automatic _variable names may be re-used within a nested block. LC 1.0
did not support this although the LC manual did not reflect the limitation.

