
EEEEEEE 0000 A ssssss
EE DODOO AA AA ss ss
EEEEE DD DD AA AA ss
EEEEE DO DO AAAAAAA ssssss
EE DD DD AA AA ss
EEEEEEE DODOO AA AA ss ss
EEEEEEE DODD AA AA ssssss

Model I, Model II, Model II I, & LOOS 6.x

Editor Assembler Reference Manual

Copyright (C) 198~ by MISOSYS
All rights reserved

,.,

Reproduction in any manner, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without written permission, is prohibited.

•

Ml$0SYS
P.O. Box 4848

Alexandria, Virginia 223~3-0848

* * * N O T 1 C E * * *
* * * L I M I T E D W A R R A N T Y * * *

t>1
MISOSYS shall have no liability or responsibility to the purchaser or

any other person, company, or entity with respect to any liability, loss, or
damage caused or alleged to have been caused by this product, including but
not limited to any interruption of service, ~oss of business and anticipatory
profits, or consequential damages resulting from the operation or use of this
program.

.....

Should this program recording or record ng media prove to be defective
in manufacture, labeling, or packaging, MIS .. will replace the program upon
return of the program package to MISOSYS "'iithin 90 days of .the date of
purchase. Except for this replacement policy, the sale or subsequent use of .,'-"'--
this program material is without warranty or liability. 1

* * * W A R N I N 6 * * *
This program package is copyrighted with all rights reserved. The

distribution and sale of this program is intended for the personal use of the
original purchaser only and for use only on the computer system noted herein.
Furthermore, copying, duplicating, selling, or otherwise distributing this
product 1s expressly forbidden. In accepting this product, the purchaser
recognizes and accepts this agreement.

MISOSYS
P.O. Box 4848

Alexandria, Virginia 2231iJ3-0848
7i3-961iJ-2998

·.,..,,.

' .:.../

<< ****~*********** *'ktt*'llrk*• ••••• *.1rk))
<<**~•*•******"""**** ••***••·• ** *• .. • ****•>>
<<*1r*•*1t- MISOSYS EDAS Editor Asse111>ler IV **"""*•>>
<< *** Copyright 198(1, by Roy Soltoff ****•»
<<******~•'If*•••******•****•••*•*••··· .. ·• .. •*•*•**•• .. •**••>>
<<tt•****••··· * ••·· .. ••*• .. •*• .. • .. •>>

Table of Contents

Preface ...
••• Introduction

Notation Conventions
Executing EDAS •••••••••••••• .. ••o•••••e••••e••••••••••
Assembly Language Syntax,

••• Labels
Operands •••
Comments •••
Expressions ••••••••••••••••••••••••••••••••••••••• 0 • •

Z-8~ Status Indicators (Flags)
Pseudo-Ops'
Assembler Directives
Macro Processor

•••••••••••••••••••• 0 ••
.................................... 11 ••

EDAS Command Su11111ary
EDAS- Command Detai 1 s

••••••••••••••• 0 •••••••••••••••••
••

••
Assemble
Branch
Change
Copy
Delete
Edit
Find
Hardcopy
Insert

.. ..
••

•••...••.•.•.........................
Kill filespec •••••••••••••••••••••••••••••••••••
Load filespec •••••••••••••••••••••••••••••••••••• .. Move
Renumber
Print

.. ...
Query Directory Rep 1 ace
Switch C.ase •• 0 ••••••••••••••••••••••••••••••••••

Type ••• ~ ••••••••••••••••••••••••••••••••••• • • • • •
Usage, Memory •••••••••••••••••••••••••••••••••••
View filespec •••••••••••••••• s •••••••••••••••••••

Write filespec •••••••••••••••••••••••••••••••••••
extend
One (1)

.. .. ~

i
1-1
1-2
2-1
3-1
3-1
3-2
3-3
3-4
3-9
4-1
5-1
6-1
7-1
7-3
7-3

7-1~
7-11
7-13
7-15
7-16

~

18
19
2~
21

7-22
7-24
7-26
7-27
7-28
7-29
7-3~
7-31
7-32
7-33
7-34
7-36
7-37 Cross Reference Utility

Tape To Disk Utility
Error Messages •••••••••••••••••••••••••••••••••••••••

8-1
9-1

l~-1
11-1

Appendix
Technical Specifications
Z-~ Quick Reference Card

.............................

•
"

Fifth Edition 1983

• ~

I
!

-----..1.l~ •• •-~ ··--

...
,/

Preface

EDAS is an evolutionary product. It has been designed to provide many
useful assembler capabilities for the most discriminating progranmer while at
the same ·time, its co11111and syntax and ease of use provide for an excellent
ass~mbler language development tool for the progra11111er from beginner through
advanced level. Its editing syntax has been implemented to appear identical
to that found in the '8'1Js BASIC interpreter so as to provide a high degree of
familiarity and minimal training requirements.

Although considerable effort was expended to make the user reference
manual as complete as possible, this documentation package in no way is to be
considered an instructive guide into the writing of Z-8'1 source p!'ograms.

·Many reference texts are available that deal with learning and illl)roving your
abilities to program in assembly language. If you are learning assembly
language, your reference materials should include at least one of the many

· good texts on th~ market, an asortment of periodicals, and a good
disassembler.

My advice is to peruse the contents of this reference manual to
familiarize yourself with its information and the Editor Assembler's
capabilities as well as the Utility Applications included on the distribution
diskette. If you have any questions concerning this application, feel free to
call or write; however, be prepared to give your EDAS registration number. It
would also be helpful to make sure your questions are not answered in the
manual.

Speaking of registrations, MISOSYS would like to provide you with the
best techni_cal support possible. To provide this support, we need to know who
our customers are. So please fill out the registration form packaged with the
diskette and return it to us prolJl)tly - postal _card postage is sufficiento
The registration number located on the diskette label must be entered onto
the registration card and should also be entered in the space provided below.
The registration number must be mentioned on all correspondance with us or
when telephoning for service, so don't lose it. Thank you.

EOAS Registration ______ _

- i -

•

Introduction to EDAS Version IV

DISTRIBUTION DISKS
·····••======•=••=

The Model I/III EDAS IV version and each of its utilities, are single
programs that work on both the Model I and III under LOOS. It is distributed
on a 35 track si~gle density data diskette. The LOOS 6.x EOAS Version IV is
distributed on a~ track double density data diskette. The Model II Version
is distributed on an 8 inch diskette.

It is strongly reco1J111ended that before using your new Editor Asseni>ler,
you should make a BACKUP copy to use in a working environment and retain the
EDAS diskette as your MASTER copy. This "master" should be back~ up to
produce a "working" copy and the "master" archived. The BACKUP utility
procedures are found in your DOS Owner's Manual in the section entitled
•UTILITY PROGRAMS•. After creating a BACKUP copy of the EDAS diskette, store
the MASTER diskette in a safe place. Use only your "working" copy for
production.

THE EDAS FACILITY
·••=••···········

The MISOSYS Editor Assembler is a RAM-resident text editor and RAM
resident or direct disk assembler for the Model I, II, and III microcomputer
systems, as.well as computers running under LOOS 6.x. The Editor Assembler
was designed to provide the maximum in user interface and ease of use while

-.. > providing capabilities powerful enough for the expert Z-8{1 assembly language
progranvner

The text editing features. of the Editor Assembler facilitate the
manipulation of alphanumeric tex-t files for both assembler source and
compiler source languages. The most common use of the editing capability is
in the creation and maintenance of assembly language source programs to be
assembled by EDAS. Through full support of upper and lower case text entry,
the Editor can serve as a line-oriented text processing tool.

The assembler portion of the Editor Assembler facilitates the
translation of Z-BCI symbolic language source code programs into machine
executable code. This object code may then be executed directly from the DOS
Ready prompt.

Although EDAS could be used as an entry-level assembler, the scope of
the do,.:umentation assumes a previous knowledge of assembler language and the
hexadecima·1 nurrt>er system. Th.is is not a "learning" manua·1 ,.. it details the
use of EDAS Version IV but in no way attempts to teach you how to program in
the Z-8'1 assembly language. You should have available a standard reference
handbook on the Z-811 code. Many texts are available.

The <A>ssemble command supports the assembler language specifications
set forth in the ZILOG 11 2811-ASSEMBLY LANGUAGE PROGRAM MANUAL 11

, 3.0 D.S.,
REL.2.1, FEB 1977, with certain limitations~

EDAS INTRO
l - 1

Introduction to EDAS Version IV

Nested MACROS are supported; however, MACROs must be defined
individually.

Operand expressions may contain the 11+ 11
,

11
-

11
,

11* 11
11 "/

11
, ".MOD. 11

,
11& 11 or

".AND." (logical ANO), "! 11 or 11 .0R. 11 (logical OR), 11 .XOR. 11 (logical XOR),
.NOT. (logica l ones complement),, .NE. and .EQ. { logi ca 1 comparison, and 11< 11

(shift) operators, and are evaluated on a strictly left to right basis.
Parentheses are not allowed!

Conditional assembly commands, where a programmer may control which
portions of the source code are assembled, are implemented with the
conditional pseudo-ops; IF, IFLT, IFEQ, IFGT, IFNE, IFLTS, IFEQ$, IFGT$)
IFNES, IFDEF, IFNDEF, and IFREF. •

Constants may be decimal CO), hexadecimal CH), octal (0) or (Q), binary
{8) 1 or string ('cc').

The Assembler co11111ands supported are "'LIST OFF, "'LIST ON, "'MODULE,
*PREFIX, *GET filespec, and *SEARCH library, as well as a range of listing
pseudo-ops {TITLE, SUBTTL. SPACE, PAGE, and constant declarations for bytes,
words, and strings).

A label can contain only alphanumeric characters and certain special
characters. A label can be up to 15 characters long. The first character 1111st
be alphabetic {A-Z), the dollar sign CS} or the <AT> sign (@). Subsequent
characters must be alphanumeric (A-Z, 0-9) or selected special. characters -
<AT> sign (Iii}, underline (), question mark (?) or dollar sign {$). For
compatibility with MACR0-81'1,-a colon may be inserted invnediately following
the symbol.

Two utilities are inclµded with the EDAS application. XREF/CMO is used
to generate a full cross reference listing of symbol use. TTD/CMD is a tool
to convert EOTASM compatible source cassette files to EDAS source disk files.

NOTATION CONVENTIONS
••••••••••••••••••••
Braces ·•o•

Braces enclose optional information. The braces are never input in
Editor Assembler conmands (Note: braces are used in C language source code).

Ellipses " ••• •

The ellipses represents repetition of a previous item.

EDAS INTRO
'11 - ~

,/

.,,
I

Introduction to EDAS Version IV

Line number "line"

"line" represents a number arbitrarily assigned to a statement for the

purpose of identifying it to the editor functions. "Line." can be any decimal
nuni>er ranging from <l - 65529>.

Period 11
•

11

A period may be used in place of any line nunt>er. It represents a

pointer to the current line of source code being assembled, printed, or
edited. It is termed the "current line pointer11 throughout,.1 this
documentation.

Top of Text "#11 or 11 t 11

The pound sign character, 11# 11

, or the letter "t", may be used in place of
any line nunt>er during a line number reference. It represents the beginning
or top of the text buffer.

Bottom of Text 111*11 or 11 b11

The asterisk character, "*", or the letter 11 b11

, may be used in place of
any line number during a line nuni>er reference. It represents the bottom of
the text buffer.

Line Increment 11 inc 11

This is a number representing an increment between successive line

numbers.

LOWER CASE ENTRY
••••••••••••••••

Lower case is supported freely throughout EDAS for text and comand
entry. All Editor Assembler commands may be entered in lower case as well as
upper case to facilitate its use as· a general purpose text editor.

Assembler source code can be entered in upper case or lower case. For
lower case entry, the Editor lll.lst be in the case converted mode (see the
<S>witch case command). This mode automatically converts lower case entry to
upper case except for text which· is between single quotes (enabling lower
case string constants) and for all text following a semicolon (permitting
lower case c011111ents).

• EDAS INTRO
l .. J,

•

)

f

\.,­
'"',)

-----_; ,_

Running EDAS Version IV

EXECUTING EDAS
••••••a•aaaaaa

EDAS is a directly executable comand file. It is accessed in response
to the DOS comand pro~t si~ly by entering:

•••••••••••••••••••••••••••••a•••••••••••••••••••••••••••••••••
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

EDAS (MEM•val,JCL,ABORT,LC,EXT••ext•,Pn•val)
EDAS *

I
I
I

MEM-val

JC!.

ABORT

LC

*

is used to protect a high memory region just
like you can in BASIC.

is used when running from Job Control Language
so that EDAS uses the iKEYIN routine for its
keyboard input.

if specified, EDAS will automatically abort
after an a~sembly with errors. It will return
to DOS Ready.

1s used when editing LC source files. It will
set tabs to 4, default extension to •ccc•, and
invoke •lower case permitted".

I
h

provides a means by which the default source
file extension can be altered to "ext". I

I
can be used to pass symbol equates to the I
assembler from the comand line. •n• can range I
from <l-4> permitting four symbol equates. I

---··--·----r------------··-·-·--·-·

if specified, will reload EDAS and maintain I
the text buffer pointers. I

Note: •val" can be entered as parm•ddd or parmaX'hhhh'.
I
I
I
I
I

There are no parameter abbreviations.

•••••••••-•••••a•••••••••••••••••••••••••••••••~••••••••••••••

The parameters shown in parentheses are entirely optional. They are used
to alter the behavior of EDAS. Parameters enhance the utility of the Editor
Assembler by giving it greater flexibility. These options are used as·
follows:

MEM•val

This parameter is ·used to protect a high region of memory from use by
EDAS. The region would usually be reserved for an in-memory assembly.

RUNNING EDAS
2 - 1

Running EOAS Version IV

If you do not enter a value, EOAS will recover the value stored at HIGH$ ·-'
(address X'4~49' and X'4(14A' for the Model I or X14411 1 and X'4412' for the
Model III) or use the value returned by the DOS (for the Model II or LOOS
6.x) and use it for top of memory, maintaining its MEMTOP pointer to that
value. If ·you do not wish to protect any memory from use by the Editor
Assembler, do not use this parameter.

You may protect a memory region similar to that which can be protected
from BASIC by entering a non-.zero value. Enter an address value in decimal or
hexadecimal which is one byte less than the lowest address you want to
protect. Your entry must be greater than the start of the text buffer. At no
time will the Editor Assembler use memory higher than the entered value. Thisw
function is useful if you have placed a high memory driver or utility program
that does not maintain HIGH$ and you want to avoid clobbering it. For
example:

EOAS (MEM•X'DFFF')

will restrict EDAS from using a~y address above X1 DFFF 1
• Your in=memory

program can be assembled starting at address X'E011(1'.

JCL (LOOS use only)

-----~------------~
EDAS uses an internal line input routine to enable th_e parsing of

-.

certain characters. This hinders the ability of commanding EDAS from within . r
the Jab Control Language (JCL) of LOOS. If you want to control the assembly
process from JCL, use the JCL parameter in the EDAS command line. If you are
going to <I>nsert text while in a JCL mode, then you must use the 11%01°1 to
simulate a <BREAK> in the JCL file. Don't forget, the 11%01 11 can only be used
if you are going to compile the JCL. For exafli)le, the following enters EDAS
and inserts one line:

ABORT

edas (jcl)
1
This is a test
%Sl,
//stop

. This parameter wi 11 cause EDAS to abort and return to DOS upon an
assembly or disk error, or one of the following errors: no text in buffer,
line number too large, bad parameters» buffer full, no such line, *GET or
*SEARCH error, *SEARCH file not a PDS, PDS member error •• It is useful when
runn1ng_ from a Job Control Language to inhibit erroneous jobs from
cont1nu1ng.

• RUNNING EDAS
2 .. 2

Running EDAS Version IV ·

LC

This parameter is used when you are editing LC source files CC
language). It will do three things for you. LC changes the source file
default extension from 11ASM 11 to "CCC" - .. CCC" is used in the LC compiler. It
will change the tab stops from every eight columns to every four columns -
more reasonable for LC source code. The LC parameter will also invoke the
<S>witch case convnand to Nlower case permittedN as LC source code is entered
primarily in lower case.

EXT•Next 11

This parameter is available for those using the EDAS editor to edit and

maintain fi 1 es other than EDAS assembler source files. For instance; the M-8~
assembler uses "MAC" as the standard extension. FORTRAN uses "FOR". You may
be using EOAS to create or edit JCL files. Use this parameter to change the
default source file extension {that used with the <L>oad and <W>rite
co11111ands) to one of your choice. You must enter a full three characters if
you use this parameter. For example:

EDAS (EXT•"MAC")

specifies that "MAC" be used as the default extension (make sure the supplied
extension is entered in UPPER CASE).

Note that the override of •ccc" if the LC parameter is used takes
precedence. If LC is specified, the EXT• parameter is ignored.

Pn•val

This parameter provides the power of entering symbol table equates
directly from the EDAS co11111and line. "Pn" is actually four parameters as "n"
can range from <l-4>. Thus, you specify the parameter as either Pl, P2, P3,
or P4. These parameters are EDAS entry symbol table additions. By passing
parameter values with these on the EDAS co11111and line, you can alter four
symbol table entries. Thus, you can use these to control EQUate options, pass
values to symbols, etc. The format usable is: ·

•••

Pn sets @@n to TRUE.

Pn•ddd sets @@n to decimal value ddd.

Pn•X'hhhh' sets @@n to hexadecimal value hhhh.

···············••=••=•=•=•=••======•==••=••=••=••··••=••••=•=••

•
RJJNff~\NGa ~

2 - 3

Running EDAS Version IV

The actual labels added to the symbol table as DEFLs are "@@n", where
"n" is the same as the "n" of "Pn". This is depicted as follows:

Pl •11111 @@l P2 •• @@2 P3 •• @@3 P4 •• @@4

•••••••••••••a•••:a•••••••

The four symbols initially have a value of zero (logical FALSE). You can
u~e these to externally set flags for use in conditional assembly (or
whatever else your heart desires). For example, say you have a program thJt
uses two conditional symbols, MODl and MOD3. If your program has the
statements:

MODl EQU @@l
M003 EQU @@3

then an EOAS corrmand 11 ne of EDAS (P 1) wil 1 set "@@l" to TRUE, 11@@3 11 w~s
defaulted to FALSE, and thus 11M001c: would be TRUE and c:MOD3 11 would be FALSE
-~ince the two conditional symbols you are using are equated to the "@@n"
par ame te_rs •

You wil 1 find this parameter support a great feature when·· running EDAS
from JCL.

EDAS *

The "EDAS *" is used to re-enter EDAS keeping the source program and
variables intact. This permits you to recover after a re-boot providing the
Editor Assembler region is not disturbed or in case you inadvertantly entered
the ranch conmand without saving your source file. The region occupied by
the Editor Assembler is not normally disturbed by a RESET and boot of DOS.
Remember to hold the <ENTER> key depressed during the RESET operation if your
SYSTEM diskette contains an AUTO function.

EDAS COMMAND MODE
•••••••••••••••••

Once 11 EDAS" is entered, the following message will appear on the video
display screen:

MISOSYS EOAS-n.n

The "n.n" is indicative of the current version nunt>er. This display is
followed by a right caret ">" prompt. The prompting character is displayed
whenever EDAS is ready to accept a command. Detailed information on all
conmands supported can be found in the chapter entitled, COMMANDS.

RUNNING EDAS
'? - '4

......

•.

Assenilly Language Information

SYNTAX
•==••··

The basic format of an assembly language statement consists of up to
four'fields of information. These fields, in order, are:

•••

{LABEL} {OPCODE} {OPERAND{S}} {;COMMENT}

LABa

OPCODE

OPERANDS

,COMMENT

is a syni)olic name assigned the address value
of the first byte of the object instruction.

1s the mnemonic of a specific Z-8'1 assembler
instruction or pseudo-OPeration code.

are arguments of the OPCODE.

is an informative notation that is ignored by
the assembler but aids in documenting the
source code.

Note: Fields are separated by a tab or spaces •

I
I
I
I l,...v
I
I
I
I
I
I
I
I
I
I
I

•••
As can be noted from the format box, none of the fields are required;

however, each line should contain at least one field. This may seem unusual
at first, but it is re4dily explained. If you want the cormient field to
occupy the entire line, start the line with a semi-colon in the first
character position of the line - then, no other field is needed. A symbolic
label can exist by itself on a line. There are some Z-8~ operation codes that
have no arguments; thus, an OPCODE could exist by itself on a line (in field
2). You will never have an argument by itself as an argument relates to an
OPCODE.

The statement line is considered to be freely formatted. That means that
there are no columnar restrictions. Fields are separated by one or more tabs
or spaces. If a tab 1s used·, it makes for neater listings. Tabs are also
retained as tabs and thus wi 11 keep source files smaller than using multiple
spaces.

Symbolic Labels

A label is a symbolic name of a line of code. Labels are always

optional. A label is a string of characters no greater than 15 characters.
The first character must be a letter (A-Z) or one of the special characters,
11 $ 11 and 11@1

•. The 11@" as the first character of a label is useful for
highlighting certain labels since labels begining with n@" appear at the
beginning of an ascendingly sorted list (such as the symbol table listing or
cross-reference listing). The dollar sign is supported for easier adaptation
of M-8'1 source files. Actually, the 11 $ 11 sorts out higher than 11@"; however,

I ffFO - Slltl:a
::l ·~ I

Assembly Language Information

it is recorrmended that you reserve use of "$" as the first character. of
"local" labels. This can be very useful in light of the "-SL" assemble switch

A label may contain, within character positions 2-15, letters (A-Z),
decimal digits (0-9), or certain special characters: the <AT> sign, "@"; the
underline, ·u "; the question mark, "? 11

; or the dollar sign, "$ 11
• The dollar

sign"$", appearing by itself, is reserved for the value of the reference
counter of the current instruction. It cannot be used as a single character
symbol.

. A symbol appearing by itself in the LABEL field of a line, will be
interpreted as being equated to the current value of the program counter.
Thus, the following two LABEL examples are completely equivalent: -"1

ALLALONE
ALLALONE EQU $

Certain labels are reserved by the assembler for use in referring to
registers. Others are reserved for branching conditions (condition codes) and
may not be used for labels. (these conditions apply to status flags). The
following labels are reserved and may not be used for other purposes:

•••
Reserved Labels

A, B, C, D, E, H, L, I, R,
IX, IY, SP, AF» BC, OE, HL
C, NC, Z, NZ, M, P, PE, PO

ANO, EQ, MOD, NE, NOT, OFF, ON, OR, XOR

•••
Examples of labels:

ENTRY @OPEN
SELECT_COOE $$CORE

Opcodes •

BUFFER$
@

BYTE POINTER WHAT?
CARRTAGE_RETURN @EXIT

The OPCODES for the EDAS Version IV Assembler correspond to those in the
Z-8~-ASSEMBLY LANGUAGE PROGRAMMING MANUAL, J.g D.S., REL 2.1, FEB 1977.

Operands

Operands are always one or two values separated by corrmas. Some
instructions may have no operands at all.

• .. INFO - SYNTAX
3 .. 2

---.

.·~·

Assembly Language Information

A value in parentheses "()" specifies indirect addressing when used with
registers, or "contents of" otherwise •

. Constants are data declarations of fixed value. They are constructed as
a sequence of one or more digits and an optional radix specification
character. The digits must be valid for the radix used. The following table
denotes aceptable constant composition:

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaEaa&zaaaaaaaaaaaaaaaaaaaaa• aa~~

I I
I Data Type Radix Char Digits Examples r1 I ----------- --------- -------- ----------------~---I hexadecimal H <S-9,A-F> lAH, ~ABH, ~FFH I
I I

l dPcimal D <S-9> lfl7D, lfl7, 15384 I
I octal 0 or Q <r,J-7> 166Q, 1660 I
I I
I binary B <~-1> ~ll(.Ull0B I
I I
I Note: Decimal is assumed if the radix character is omitted I
I I
•••

A constclllt not followed by one of the radix characters is assumed to be
decimal. A constant must begin with a decimal digit. Thus •FFH• is not
permitted, ~ile "iFFH• is valid.

Operands may also be constructed as complicated expressions using the
mathematical and logical operators. Due to the extent of the documentation,
they are described in the section on "Expressions".

Comments

All cements must begin with a semicolon 11
;". If a source statement line

starts with a semicolon in the first character position of the line, the
entire line is a cement. If EDAS is in the lower case converted mode,
con111ents will be retained in whatever case they are entered. It is suggested
that conments be entered in lower case with punctuation as required. It will
make your source code listings much easier to read. All entry of text
following a semi-colon is maintained in its entered case •

•
lNFO - SYNTAX

'.~ .,]

Assembly Language Infonnation

EXPRESSIONS . ,,._,
•••••••••••

A value of an operand may be .an expression consisting of multiple terms
(labels and data constants) connected with mathematical operators. These
expressions are evaluated in strictly LEFT to RIGHT order. No parentheses are

. al lowed. EDAS does not support operator precedence. Most operators are
binary, which means that they require two arguments. Both "+ 0 and 0

-
0 have

unary uses also. The following operators are supported:

•••

OPERATOR FUNCTION EXAMPLE ""t

·-·------ ------------------------ -------------------
+ Addition ALPHA+ BETA

- Sub tract i on ALPHA .. BETA

ti Multiplication ALPHA* BETA

I Division ALPHA/ BETA

.MOD. Modulo Division ALPHA .MOD. BETA-

< Shift Left or Right ALPHA< -BETA

.ANO. or & Logical Bitwise ANO ALPHA .AND. BETA

.OR. or 1 Logical Bitwise OR ALPHA .OR. BETA

.XOR. Logical Exclusive OR ALPHA .XOR. BETA

.NOT. Logical l's Complement FALSE EQU .NOT. TRUE

.NE. Logica 1 Binary Not Equal ALPHA .NE. BETA

.EQ. Logical' Binary Equal ALPHA .EQ. BETA

% Length of MACRO %#LABEL or%%

S& MACRO label concatenation INAME%&L

•••
Addition (+)

The addition operator wi l1 add two constants and/or symbolic values.

When used as a unary operator, it simply echoes the value.

.. • IKFO - EXiRESSIOKS
1 "' 4

. ' ..

"
Y'

'

\

Asselli>ly Language Information

Examples:

001£ CON3r.J EQU 30

iliJl(I CON16 EQU +lliJH

il1113 CONJ EQU 3

fllf'2E A2 EQU CON3~+CON16

Sub traction (-) ---------------
The minus operator will subtract two constants and/or symbolic values.

Unary minus produces a 2's colll)lement.

Examples: ____ ?"' ___ _

IIUlJSE

FFF2

A2

A4

Mult1plicat1~n (*)

-----------------~

EQU CON31iJ-CON16

EQU -A2

The mu-1t1p1ication operator w111 perform an integer multiplication of a
16-bit multiplicand by an 16-bit 1111ltipl1er.· Overflow of the resulting 16-bit
value is not flagged as an error.

Exall1)1es:

i'lEI

BF2{1

Division (/)

AS

A6

EQU

EQU

CON30*CON16

60000*3 ;this overflows

The division operator will perform an integer division of a 16-bit
dividend by an 8-bit divisor.

Examples:

0002

1840

A7

AS

.. •

EQU

EQU

5/2

48928/7

INFO - ElPRESSlOKS
3 - 5

Assembly Language Information

Moc.tu lo (.MOO.)

The modulo operator calculates the remainder of the above integer
division.

Examples:

(i)liJf/11

01i'fl5

Shift (<)

A9

Alfi

EQU

EQU

5.M00.2

48928.M00.7

This operator can be used to shift a va?ue left or right. The form is:

•••

VALUE < {-}AMOUNT

If AMOUNT is positive, VALUE 1s shifted left. If AMOUNT is negative,
VALUE is shifted right. The magnit~de of the shift is deter~ined from the
numeric value of AMOUNT. A good use of the SHIFT operator is to determine the
high order byte value of a l6•bit value.

Examples:

------·--
(IJQl57 HIORO EQU 5739H<-8

CfJ90 Al EQU 3Cl!iH<4

fa3Cil A2 EQU JC~H<-4

BBFF Al EQU 3CBBH<8+255

03CIO A3 EQU l5+3CjfiJH<-4

The next higher page address in a program is easily calculated with:

CORE OEFL
ORG

S<-8+1<8
CORE

Logical AND (.ANDe or&)
---------------.. --.. ---~-

The logical AND operator bitwise ANDS two constants and/or symbolic
values. Each bit position of the 16-bit resultant value is a 111'1 only if both

• INFO - EXPRESSIONS
l - 6

i ..

/

'·-V

-:-

-~~,.,

Assembly Language Information

arguments have a 11111 in the corresponding position, or a 11011 if either
argument has a "0 ".

Examples:
--•-.-----

Al

A2

A3

Logical OR (.OR. or!)

EQU

EQU

EQU

3C0IIH&0FFH

11&15

0AAAAH.ANO.5555H

The logical OR operator bitwise "ORS"· two constants and/or symbolic
values. Each bit position of the 16-bit resultant value is a "1 11 if either
argumen·t. has a 11111 in the corresponding position, or a 110 11 if neither
argument has a 11111

•

Examples:
--------~-

JCFF Al EQU 3C011H!(IFFH

lill!IF A2 EQU (I.OR.15

FFFF-· A3 EQU 0AAAAH.OR.5555H

Logical XOR (.XOR.)

The logical XOR operator performs a bitwise exclusive OR on two

constants and/or symbolic values. Each bit position of the 16-bit resultant
value is a 11111 only if both arguments have reversed bits in the corresponding
position (i.e. one must have a 11111 while the other must have a "IP). The XOR
operation is considered a modulo two addition.

Examples: _.._ ______ _

3CF8

0(1(17

FFFF

Al

A2

A3

Logical NOT (.NOT.)

EQU

EQU

EQU

3C07H.XOR.lslFFH

8.XOR.15

"AAAAH.XOR.5555H

This is a unary operator. It performs a one's complement on the tenn it
precedes. Observe the following examples:

.. IME'Q - EXPRESSIONS
3 - 7

FFFE
FFFF
0(1)00

Tl
T2
T3

Logical NOT-EQUAL (.NE.) ----------·--------------

•'

A$$eni,ly Language Infonnation

EQU
EQU
EQU

.NOT.1

.NOT.0

.NOT.-1

This operator is a binary operator that co""ares two adjacent terms. The
resultant value is TRUE if the terms are not equal. A FALSE result is
returned if the two terms are equal. Observe the following examples:

0~00 Tl EQU lfa00.NE.le9JS
FFFF T2 EQU 1000.NE.10 ,...w
FFFF T3 EQU l.NE.-1

"""" T4 EQU .NOT.QJ.NE.-1

Logical EQUAL (.EQ.)

--------------·-----
This operator is a binary operator that co~ares two adjacent terms. The

resultant value is TRUE if the terms are equal. A FALSE result is returned if
the two terms are not equal. Observe the following examples:

FfFF
!ll~0G
f,j(afMI
FFFF

Tl
i2
T3
T4

EQU
EQU
EQU
EQU

Macro Length Operator{%)

l~0YJaEO~ l~i'u0
10J(l}(ll of Q o 1($
l.EQ .. -1
.NOT.S.EQ.-1

The length operator is applicable only with MACRO usage. Therefore, its
use will be discussed in the chapter on MACRO PROCESSING.

• ,,

INFO - EXPRESSIONS
3 - 8

l

y

Assembly Language Information

Z-81 STATUS INDICATORS (FLAGS)
••••••••••••••••••••••••••••••

The flag registers (F and F') supply information to the user regarding
the status of the Z-80 at any given time. The bit posi~ions for each flag are
as follows:

r

··········••=••=••··········••=••·····••=••····••=••···········
2

I
7 6 5 4 3 l " I
s z X H X P/V N C I

I
C is the Carry flag. z is the Zero flag. I ,.~

I
N is the Add/Subtract flago s is the Sign flag. I

I
P/V is the Parity/Overflow flag. x_ is not used. I

I
H is the Half-carry flag. I

I
·····••=••·················•·=••········•·=•=•=•••===•=••=••···

Each of the two Z-8~ flag registers contain six (6) bits of status
information which are set or reset by CPU operations. Four of these bits are
testable (C, P/V, Z, and S) for use with conditional Ju111>, call, or return

, instructions, Two flags (H, N) are not directly testable and are used by the
Z-8~ internally to handle Binary Coded Decimal (BCD) arithmetic. Two flag
register bits (3, 5) are not used by the Z-8~.

-·
In the Z-8S memonic instruction set, the •CALL•, •Jp•, and •JR•

instructions can contain a 0 condition code• which 1s part of the argument of
the OPCODE. The branching determination is performed according to the result
of the flag register testable bits. The mnemonics for these condition codes
are as follows:

•••

FLAG -------
Carry

Zero

Sign

Parity

•

CONDI TI ON SET CONDITION NOT SET
------------- -----------------

C N_C

z NZ

M (minus) P (plus)

PE (even) PO (odd)

INFO - FLAGS
3 - 9

Assembly Lan~uage Information

Carry Flag (C)

The carry flag is set or reset depending on the operation being
performed. For "A00 11 instructions that generate a carry and 11 SUBTRACT 11

instructions that generate a borrow, the carry flag will be set. The carry
flag is reset by an "ADO" that does not generate a carry and a "SUBTRACT"
that generates no borrow. This saved carry facilitates software routines for
extended precision arithmetic. Also, the "DAA" instruction will set the carry
flag 1f the conditions for making the decimal adjustment are met.

For instructions RLA, RRA, RLS, and RRS, the carry bit 1s used as a link
between the least significant bit (LSB) and most significant bit (MSB) fofw
any register or memory location. During instructions RLCA, RLC sand SLA s,
the carry contains the last value shifted out of Bit 7 of any register or
memory location. During instructions RRCA, RRC s, SRA s, and SRL s, the carry
contains the last value shifted out of Bit ~ of any register or memory
l ocat1 on.

For the logical instructions AND s, OR s, and XOR s, the carry flag will
be reset. ihe carry flag can also be set (SCf) or co~lemented (CCF).

Add/Subtract Flag (N).

--------------------~
This flag is used by the decimal adjust accurulator instruction (DAA) to

distinguish between "ADD" and •SUBTRACT• instructions. For all •ADD"
instructions, "N" will be set to a •zero". For all "SUBTRACT• instuctions,
"N" will be set to a •one•.

Parity/Overflow Flag (Pio>
••••••••••••••••••••••••••

This flag is .set to a particular state depending on the. operation being
performed. For arithmetic operations, this flag indicates· an overflow
condition when the Accumulator result is greater than the maximum possible
nuntler (+127) or is less than the minimum possible nuntler (-128). The
overflow condition is determined by examining the sign bits of the operands.

For addition, operands with different signs will never cause overflow.
When adding operands with like signs and the result has a different sign, the
overflow flag is set. For example:

+12g • 0111 100W
+1~5 • Ill~ 10~1

ADDEND
AUGEND

------~--~------------------·---+225 • 111~ 00~1

•

(-95) SUM

INFO - FLAGS
3 .. l(ll

r

......

Assembly Language Information

The two nurrt>ers added together have resulted in a nurrt>er that exceeds +127
and the two positive operands have resulted in a negative nurrber (-95) which
is incorrect. The overflow flag is therefore set.

For subtraction, overflow can occur for operands of unlike signs.
Oper.ands of like sign will never cause overflow. For ex~le:

+127 • illl 1111 -
C-)-64 • ll~j jj~~

MINUEND
SUBTRAHEND

~----------------------------------+191 • 1~111111 DIFFERENCE

The minuend sign has changed from a positive to a negative gj.'(ing an
incorrect difference. The overflow flag is therefore set. Another method for
predicting an overflow is to observe the carry ·into and out of the sign bit.
If there is a carry in and no carry out, or if there is no carry in and a
carry out, then ove~flow has occurred.

This flag is used with logical operations and rotate instructions to
indicate the parity of the result. The nurrt>er of 11 one 11 bits in a byte are
counted. If the total is odd, 11 000 11 parity (P•~)) is flagged. If the total is
even, 11 EVEN 11 parity is flagged (P•l). When inputting a byte from an I/0
device NIN r,(C) 11

, the flag will indicate the parity of the data.

During search instructions (CPI, CPIR, CPD, and CPDR) and block transfer
instructions. (LOI, LDIR, LOO, and LDDR), the P/V flag monitors the state of
the byte count register CBC), When decrementing the byte counter results in a ,
zero value, the flag is reset to zero, otherwise the flag is a one •

During 11 LD A,I 11 and 11LD A,R 11 instructions, the P/V flag will be set with
the contents of the interrupt enable flip-flop (IFF2) for storage or testing.

The Half Carry Flag (H}

The half carry flag {H) will be set or reset depending on the carry and
borrow status between bits 3 and 4 of an 8-bit arithmetic operation. This
flag is used by the decimal adjust accurrulator instruction {DAA) to correct
the result of a packed BCD add or subtract operation. The "H 11 flag will be
set (1) or reset{~) according to the following table:

···············••=••···
H

l

ADD

There is a carry from
Bit 3 to Bit 4

There is no carry
from Bit 3 to Bit 4

SUBTRACT

There is no borrow
from. Bit 4

There is a borrow
from Bit 4

······••=•=•••=•=•=••=•=•••=••=••··••=•••=••··••===••••=••·····

• INFO - FLAGS
3 - 11

Asseni>ly Language Information

The Zero Flag CZ)
--------~-~--·---

The Zero flag CZ) is set pr reset if the result generated by the
execution of a certain instruction is a zero. For 8-bit arithmetic and
logical operations, the "Z" flag will be set to a 11 one 11 if the resulting byte
in the Accumulator is zero.

For compare (search) instructions, the 11 211 flag will be set to a 11 one"
if a cofl1)arison is found between the value in the Accumulator and the memory
l.ocation pointed to by the contents of the register pair HL.

When testing a bit in a register or memory location, the "Z" flag will
contain the state of the indicated bit.· ~1

When inputing or outputing a byte between a memory location and an I/0
device CINI, IND, OUTI, or OUTD), if the result of register B minus one (1)
is zero, the Z flag is set, otherwise it is reset. Also for byte inputs from
I/0 devices using "IN r,(C)", the Z flag is set to indicate a zero byte
input.

The Sign Flag (S)

The Sign flag CS) stores the state of the most significant bit of the
accumulator (Bit 7). When the Z-8~ performs arithmetic operations on signed
numbers, binary two's complement notation is used to represent and process
numeric information. A positive number is identified by a "zero•· in bit 7. A
negative nuni>er is identified by a •one". The binary equivalent of the
magnitude of a positive nuni>er is stored in bits S to 6 for a total range of
from S to 127. A negative nuni>er 1s represented by the two's complement of
the equivalent positive nuni>er. The total range for negative numbers is from
-1 to -128.

When inputing a byte from an I/0 device to a register, "IN r,(C)", the
"S" flag will indicate either positive (S=~) or negative (S•l) data.

INFO - FLAGS
3 - 12

-

' .•. J,_.,

J
Assembly Language Pseudo-OP Codes

PSEUDO-oPS
••••••••••

There are many pseudo-OPs which EDAS will recognize. These assembler
operations, although written much like processor instructions, interface to
the ·assembler instead of the Z-8~ processor. They direct the assembler to
perform specific tasks during the assembly process but have no meaning to the
Z-8'1 processor. Some of these pseudo-OPs generate data values used by your
program and are called •data declaration" pseudo-OPs. Others control paging
operatiQns and may, be best termed, "listing" pseudo-OPs. A broad range of
operations to invoke the assembly of blocks of code based on conditional
evaluations are supported through many "conditional• pseudo-OPS. These
assembler pseudo-OPS are: ~ ·

-···

DB

DC

DS

DW

Constant Declarations

specifies a data byte or string of bytes. Also
equivalent to DEFS, DEFM, and OM.

specifies a multiple of byte constants.

reserves a region of storage for program use.
Equivalent to DEFS.

specifies a word (16-bit data value) or a
sequence of words. Also equivalent to DEFW.

•••
•••

Origins and Values

DEFL establishes a value for a label- which can
be altered during the assembly.

END signifies the end of a -A-GET or -.SEARCH member.
Will indicate the end of the assembly when
detected in the text buffer. Supplies the
execution tran$fer address.

EQU estalishes a constant value for a label.

LOR& establishes a load origin for executable
object code files.

OR6 establishes an execution origin for executable
·object code files or in-memory assemblies.

···························•=••·••=••·········••=••············

PSEUDO-OPS - GENERAL
4 - l

Assembly Language Pseudo-OP Codes

··•·=••······

IF

IFEQ{$}

IFLT{$}

IFGT{S)

IFNE{S}

IFDEF

IFNDEF

IFREF

ELSE

ENDIF

Conditionals

conditional evaluation of expression.

logically TRUE if expressionl • expression~.

logically TRUE if expressionl < expression2.

logically TRUE if expressio,il > expression2.

logically TRUE if expressionl <> expression2.

logically TRUE if 11 label 11 has been defined
prior to this statement, else FALSE.

logically TRUE 1f 11 label• has not been defined
prior to the statement, else FALSE.

logically TRUE 1f "1 abe 1" has been referenced
but not defined prior to the statement, else
FALSE.

alternate clause to be assembled if the pri~r
clause has evaluated TRUE.

signifies the end of a conditional block •.

Note: 11 {$} 11 denotes alternate macro string comparison •
•••
•••

COM

ENDM

ERR

MACRO

PAGE

SPACE

susm
TITLE

Misce 11 aneous

generates an object code file comment record.

designates the end of a MACRO model.

forces an assembly error.

des1gantes the prototype of a MACRO model.

transmits a form feed during a listing.

generates extra line feeds during a listing.

invokes a heading subutitle for listings.

invokes a heading title for listings.

··•=••·

• ..
PSEU00=0.0 S

4 - 2

'_.,,

Asseui>ly Language Pseudo-OP Codes

PSEUDO-OP DB
••a•••••••••

The NDBN pseudo-OP is used to define a data byte or series of bytes. Its
synt.ax 1s:

•••

DB n{,n}{, 1 c1 }{,s}{,expression}

n defines the contents of a byte at the current
reference counter to be "n".

•c• defines the content of one byte of memory to
be the ASCII representation of character •c•.

•s• defines the contents of n bytes of memory to
be the ASCII representation of string "s",
where "n" is the length of 11 s11 and must be in
the range 1-63.

expression is a mathematical expression which evaluates
to a number in the range <0-255>.

I
I
I
I
I
~
I
I
I
I
I
I
I
I
I
I
I

·····~·-···
The constant declaration •os• permits the concatenation of its data

arguments us4ng the coma •,• as an argument separator. Data values are
denoted according to the specifications in the chapter on ASSEMBLY LANGUAGE
INFORMATION.

In order to provide col11)atibil Hy with constant declarations of other
assemblers, EDAS provides other data declarations that are co~letely
equivalent to "DB". The following pseudo-OPs can be used in lieu of "D8 11

: OM,
DEFB, DEFM. Because DB, DEFB, DM, and DEFM are exact equivalents and all four
are supplied only for ease of transition from other assemblers, each must be
contained in the OP-code table used by EDAS. However, only "DB" was selected
to be high up in the OP-code table. Since the OP-code table is searched
sequentially, the use of NQBN in your source code will produce a slightly
faster assembly than use of DEFB, DEFM, or OM.

•os• string arguments permit two connected single-quotes to indicate a
single-quote value PROVIDED that two or more characters precede the 2-quote
appearance in the string. For exa~le:

OB I AB 11 C'

will produce the character string: 41 42 27 43. This may have been coded as a
co~lex declaration such as, "1 AB 1 ,27H, 1 C111

, but the extensive declaration
support in EOAS provides the easier specification.

~ • PSEUDO-OPS - DATA DECLARATIONS
4 - 3

Assembly Language Pseudo-OP Codes ~

-
The following partial assembler listing demonstrates the versatility of

the expanded constant declarations.)

000{1J 54 fillilf87{a DB 'This',' 1
,

1 is', 1 ','a', 1 ','test'
68 69 73 20 69 73 20 61

. 20 74 65 73 74
090E 01 00080 DB 1,2,'buckle your shoe',3,4,'close the door•

02 62 75 63 68 6C 65 20
79 6F 75 72 2S 73 68 6F
65 03 04 63 6C 6F 73 65
2~ 74 68 65 20 64 6F 6F
72

0~3~ 54 00fil90 DB 'This is a tes 1 ,'t1 180H
68 69 73 2~ 69 73 2~ 61
2(1 74 65 73 F4

In the last example, note the expression argument specified as,

• t' 1 S"H

Much more complicated expressions could be utilized.

The expansions of the constant (the rows of eight bytes per row) will
appear in listings. The expansions may be suppressed from yout_ listings by
using the,assembler switch, -NE.

PSEUDO-OPS• DATA DECLARATIONS
~· 4 - 4 .

-
- ,✓

Asseat»ly Language Pseudo-OP Codes

PSEUDO-OP DC

·••=••······
This pseudo-OP defines a repetitive constant. Its syntax is:

•••

DC quantity.value

quut1ty

v&lue

specifies how many times that "value" 1s to be
repeated as a data byte. It can be defined as
any other data definition: n, expression, •c•.

1s the constant to be repeated. As in a 11D8 11

data declaration, the value can· be specified
as a character, 'c', a numeric value, n, or an
expression evaluated to a number in the
range <0--255>.

I
I
I
I
I
I '1
I
I
I
1
I
I
I

··••==••·········
The pseudo-OP, 11 DC 11

, will define a repetitive constant and eliminate the
necessity of defining a series of identical data values by long DB
specifications. For exall1)le 1 the following two statements are equivalent:

os ;.0.m,s,0.0,0,0,0.0,0.0,0,0,0,0

DC 16,0

The latter is much shorter, easier to enter as text, more readable, and takes
up less space in its source form.

The "quantity• must range from l to 65535 (a zero value will result in
65536). The •value" must be less than 256. With this pseudo-OP, you can
generate repetitions of a single constant. For example, say you want to set
1~0 storage locations to a zero value during the assembly. Insert the
statement, ·

and it will be done. A character constant can also be used for 11 value11 as
illustrated in the following example:

DC 256, 1 A'

which will set the next 256 storage locations to the letter, "A".

The expansions of the constant will appear in listings just as they do
in the OB expansion. The expansions may be suppressed from your listings by
using the assembler switch, -NE.

~• PSEUDO-OPS - DATA DECLARATIONS
4 - 5

Assembly Language Pseudo-OP Codes

PSEUDO-OP OS
••••••••••••

This pseudo-OP is used to reserve a quantity of storage locations
use by your program. Its syntax is:

•••

OS nn

nn reserves "nn" bytes of memory starting at the
current value. of the reference counter.

for

The OS pseudo-OP can also be entered as "OEFS" in order to provide a
compatibility with other assemblers that use only 11 DEFS 11 to reserve storage
locations. For reasons of efficiency as discussed earlier, use of the 11 0S 11 in
lieu of the "DEFS" will result in slightly faster assemblies. Therefore, it
is suggested that if you are transfering over to EOAS from another assembler~
globally change all "DEFS" pseudo-OPs to 110S".

The quantity, 11 nn", can be a data value or an expression. Note that "OS"
does not define data values. The "OS" pseudo-OP adds the quantity of storage
locations reserved to the current program counter (PC) to calculate a new PC
value. When generating an object code file, this action will cause the next
assembled byte to create a new load record. The following ex·aJll)les depict
various •OS" declarations.

Examples of the OS pseudo-OP
------------·-----------~---
FCB OS 32

will define a 32-byte region for later use as a File Control Block.
Its origin can then be referenced as "FCB".

TABLE OS TABLE LENGTH* TABLE WIDTH - -
will reserve a quantity of storage locations equal to the result of
multiplying the two terms, TABLE LENGTH and TABLE WIDTH. - -

If your source code is being assembled with the ·•-CI" switch, EDAS
automatically converts all "OS• declarations into equivalent "DC"
declarations using a value equal to zero. The above two ex~les would
therefore be translated to the following:

FCB DC
TABLE DC

32,0
TABLE_LENGTH * TABLE_WIDTH,0

PSEUQO-OPS - DATA DECLARATIONS
~ 4 - 6

/

Assembly Language Pseudo-OP Codes

PSEUDO-OP OW

·This declaration specifies a 16-bit data value. Its syntax is:

··••=-••···················
OW nn{,'cc'}{,nn}

nn defines the contents of a 2-byte word to be
the value, "nn".

•cc• defines the contents of a 2-byte word to be
the characters, 'cc'

I
I
I
I
k~
I
I
I
I

•••
The OW pseudo-OP can also be entered as 11 0EFW 11 in order to provide a

compatibility with other assemblers that use only 110EFW" to declare data
words. For reasons of efficiency as discussed earlier, use of the "DW 11 in
lieu of the aoEFWN will result 1n slightly faster asseni>l1es. Therefore, it
1s suggested that 1f you are transfering over to EDAS from another asseni> ler,
globally change all "DEFW" pseudo-OPS to "OW". .

In the expansion of the data word, 1ts least significant byte is located
at the. current program reference counter while the most significant byte 1s
located at the reference counter plus one. The data word can be a numeric
constant, an expression that evaluates to a 16-bit value, or a character
con~tant of one or two characters. The following examples illustrate various
forms o.f •ow• data declarations.

00~0 1027 00100 ow 10000,1000,100,10.1
E803 6400 0A00 0100

j~iA 6261 001111

00~C 5200 00120
6F01J 7900

ow
ow

I ab'

'R', 1 0 1 ,•y•

Note that if a single character is defined as a character constant word, the
low-order byte of the word will contain the character value and the
high-order byte of the word will be s~t to zero.

" #

PSEUDO~-OPS - DATA fJ£CtAAAT!OlliS
7

Assembly Language Pseudo-OP Codes

PSEUDO--OP OEFL
IIIUIIIIUUll:IIUII••••• 811111

The 11 DEFL 11 pseudo-OP assigns a value to a label. The value is permitted
to be changed during the assembly. The "DEFL" syntax is:

·································••11111••11111•••11111••·······••11111••······ I
label DEFL nn I
label DEFL expression I

I
nn sets the value of 11 labeT1' to the quantity 11 nn 11 I

I
expression sets the value of 11 label 11 to the evaluated I ,,..v

result of 11 expression". I
I

•••
This declaration is similar to the "EQU11 declaration except that the

label value is permitted to change during the course of the assembly without
producing phase errors (which are generally observed as numerous MULTIPLY
DEFINED SYMBOL errors). If the value of "label" 1s declared by a "DEFL", the
declaration can be repeated in the program with different values for the same
label. One useful purpose to support this method of coding would be to
s1m11ate the maintenance of two program reference counters;- Observe the
following sequence of code:

PROGS

MSGl
DATA$

PROGS

MSG2
DATA$

••• some code
DEFL $
ORG DATA$
DB 'This 1s
DEFL S
ORG PROGS
••• more code

; Save current program counter
; Set PC to data counter

a test message',CR
; Save current data counter
; Reset PC to program counter

DEFL $; Save current program counter
ORG DATAS ; Now set PC to the data counter
DB 'Another message',LF,CR
DEFL $; Save new current data counter

. ORG PROGS ; then re-establish PC
••• continuation of program code

The program maintains two address counters. One is utilized as a counter to
keep track of the code portion of the program (PROGS), while the other is
used to keep track of the data portion of the progr.am (DATA$). This technique
can be used to keep the data fields associated with routines in close
proximity to their associated routine in the source code, while the object
code location of the data is collected into some other region.

Labels defined as 11 DEFL 11 will be carried as "DEFL" in the EQUate file
generation of the Cross-Reference utility. They will also be notated in the
cross-reference listing by a plus sign, 11+11

, prefix to the label name.

PSEUDO-OPS· ORIGINS and VALUES
• 4 - 8 ,,

./

\

Assellb 1 y Language Pseudo-OP Codes

PSEUDO-OP END
•••••••••••••

The "END• pseudo is used to denote the exit of a 1rGET or "'SEARCH
process, or when used in the memory text buffer, it will denote the end of
the ~ource code. Its syntax is:

•••

END {nn}
END {label}

signifies the end of the source program (see
text for handling during 1rGET and *SEARCH).

nn specifies an execution transfer address branch
that will be used by the system loader.

label specifies an execution transfer address branch
to be the v a 1 ue of "1 ab,;! l 11 •

•••

The •END• statement is used to indicate to the assembler, when the last
source code statement is reached so that any following statements are
ignored. If, no •END• statement is found, a warning is produced. The END
statement can specify a transfer address (i.e. END LABEL or END 6000H). The
transfer address is used by the DOS program execution to transfer control to
the addres~ specified in the END statement. Note that the END statement
cannot have a label in the:.tlabeh-field,,,of, ttttns1ta1trement).

The 11 END• statement is treated differently if detected while assembling
a file that was the target of a "*GET filespec• or ••SEARCH library•. In the
case of the 1rGET 1 the •END" is treated as if the end-of-file was reached and
EDAS will switch back to assemble from what ever invoked the 1rGET. A similar
process takes place with the *SEARCH, except that EDAS continues the
searching process 1n its normal manner.

PSEUDO-OPS - ORIGINS ud VALUES
• • 4 - 9

· Assembly Language Pseudo-OP Codes

P SEUOO ... QP EQU
•••••••••••••

This pseudo-OP assigns a constant value to a label. Its syntax is:

•••
I I
I label EQU nn I
I label EQU expression I
I I
I nn sets the value of label to nn. I
I I
I expression sets the value of label to the calculated I .,..v
I value of "expression" I
I . I

The •EQU" (equate) pseudo-OP is the generally accepted way to define
constant values for use in your program. This declaration serves a different
purpose than the the data declarations such as DB, DC, and OW. Data
declarations specify storage locations that contain the values declared. The
•EQU" assigns the value to the label; thus, anywhere the label is used, the
assigned value is utilized. Your programs will be more readable, and easier
to maintain if the values need to be altered in a program revision. For
instance, the first starting address of a video memory area might be X • 3C0QI •
or l536i. If yaur program had a routine to blank out this video area, it
could be written as <A>: ·

CLEAR LO
LO
LO
LO
LDIR
RET

HL,15361iJ
DE,1536'9+1
(HL), I I

BC, l(i23
<A> or

CLEAR LO
LO
LO
LO
LDIR
RET

HL,SCREEN
DE,SCREEN+l
HL,. I

BC,CRTLEN-1

If you had established labels for the video screen with: "SCREEN EQU 15360•
and "CRTLEN EQU lliJ24", then the above routine could be re-written as in
which not on.ly makes it ioore readable, but when you revise your program for
one that has video memory at a different address, all you need do 1s change
the value of one •EQU• statement.

It is also useful to establish a series of equates for system vectors
that are to be used in yo!.lr- program. Don• t. code ~ statemer1t as 11CALL 4424Hai;
establish a label such as "@OPEN EQU 4424Hu, then your CALL statement 1s
coded as MCALL @OPEN•, certainly much more r~adable.

An •EQU• can occur only once for any label. A multiple •EQU• with
different values will result in the MULTIPLY DEFINED SYMBOL error.

PSEUDO-OPS• ORIGINS and VALUES
A• 4 - 10

.........

.J

I,
., .. /

Assembly Language Pseudo-OP Codes

PSEUDO-OP LORG
••••••••••••••

The NLORG" pseudo-OP i~ used to establish an object code file (or part
of .one) that loads at an address different from where it will execute. The
syntax of •LORG" is:

•••

LORG nn
LORG expression

nn is the address to start loading the object
file (Qr part of th~ file). . ,c·

expression when evaluated, "expression.; will be treated
the same as "nn•.

I
I
I
L,.,
I
I
I
I 1

I
I

••••••••••••••••••••••••••••••••••a••••••••••••••••••••••••••••

A load-origin assembler directive, "LORG", is provided to cause the load
addresses of the object file to be based on the LORG operand while the
execution code address references wi11 still be based on the •QRG" operand.
This 1s useful to construct a n~dule (or part of a module) that will load at
an address different from its execution address. For exa111>le:

ORG 52f111JH
-· LORG 7(10"9H

will assemble code so that absolute address references and the execution
addresses are referenced from X'5200'; however, the object code file will
start loading at X17000 1

• Any subsequent "ORG" will maintain the offset
difference established at the previous "ORG" until another "LORG" is
detected.

Why incorporate such a facility into the assembler? How can I make use
of it in my programs?· Easy answer! Consider this scenario. A program ·is
col11)osed of three large modules, A, B, and C. Module NA" performs
initialization, has "run-time" routines, and determines whether module •a• or
"C• is to be executed. Consider further, that once either module •a• or •c•
execute, the program terminates. If we assemble an three modules so that
they are contiguous to each other, their execution take up more space than is
actually needed. If we need to maximize the amount of memory available for.
data storage, buffers, and stack, we could use an "LORG" to have module •c•
load after module 11B11

, but "ORG• module 11C11 so that it executes where module
11 B" executes. When module 11A11 determines that it needs to execute module •c•,
it can move the entire module in memory to 11B1 s" position easily with an LDIR
instruction. This will free up memory which can be used for the needed
storage.

~· PSEUDO-ops· - ORIGINS and VALUES
4 - 11

Assembly Language Pseudo-OP Codes

PSEUDO-OP ORG,, ..
The 110RG 11 pseudo-OP is used to establish an address for the program

counter so that the absolute address references within a, program are
designated. 'The syntax of 11 0RG" is:

•••••••• .. ••••••• .. ••••:a•••••• .. ••••••=•=••••••••·•••••••••••••••••

ORG nn
ORG expression

nn sets the address reference counter to the
value 11 nn 11

•

expression when evaluated, "expression" wi 11 be treated
the same as 11 nn". Terms of 11 expressi on" must
be defined prior to the 11 0RG 11 statement •

................... =•=•=••·••======••••==••·••=•=••····••=••·••= .,

The "ORG 11 statement is used to tell the assembler at what address to
begin generating the object code for statements which follow. The assembler
wi 11 generate object code starting at the address specified ·-by 11 nn 11 or
11 expression 11

• automatically advancing the program counter by the length of
each instruction or data declaration assembled. The 11 0S 11 data declaration
advances the program counter by the amount of storage locations reserved. /

A program can have more than one "ORG 11 statement. If multiple 11 0RGs 11 are
used, and one or more inadvertantly will cause the overwrite of a previously
assembled module of code, no warning message of any kind will be issued. It
is left up to the programmer, to protect against such events by use of
conditional tests (using conditional pseudo-OPs} and the "ERR" pseudo-OP.

The ORG pseudo-OP causes no code generation itself but just prepares the
assembly process to start a new object deck record with. the generation of
subsequent object code (note that if the evaluated address is one greater
than the current PC, a new object deck record will not be started).

PSEUDO-OPS - ORIGINS arid VALUES
" 4 - 12

··~

\

Assembly Language Pseudo-OP Codes

CONDITIONAL PSEUDO-OPS

The "conditional" pseudo-OPs provide a powerful way to maintain a
program that is slightly different when assembled to execute on different
machine configurations. Instead of having to maintain multiple copies of a
program, with each c~py having some routines and modifications to make a
"custom" version of the program, by using the conditional pseuao-OPs, you can
maintain one set of source code that has conditional segments (or blocks) of
code that perform the "customization". It is very easy to specify which
segments are to be assembled during a particular assembly. The structure of a
conditional block is as follows:

•••

IFxx argument of IF
.
code block or segment .
ENDIF

•••

The argument of the 11 IF 11 takes on different formats depending on the
particular 11 IF" pseudo-OP. It can be an expression, a label, or two
expressions ·separated by conmas. More on this later; for now, just refer to
it as the argument. If the argument is evaluated to a non-zero value, it is
interpreted as a logical TRUE condition. If the a~gument is evaluated to a
zero value;· it is interpreted as a logical FALSE condition. When the
condition is TRUE, the conditional segment between the "IF" and the "ENOIF 11

is assembled. If "expression" is evaluated to a zero value then the
conditional block is not assembled but just listed (during the listing pass).
For the sake of uniformity, use the value of 11-1" for a logical TRUE and a
11011 for a logical false so that, "FALSE EQU .NOT.TRUE" is a valid statment.
These can be set as equates in the beginning of a program as follows:

TRUE EQU -1 .,

FALSE EQU ~ .,4,),'.i I ,, I',~ I J ' :!~,,

MODl EQU TRUE
MOD2 EQU FALSE
MOD3 EQU FALSE ' .- ---•-•'••--··------'

BE CAUTIOUS WHERE THE OPERANDS OF THE CONDITIONAL ARE NOT DEFINED PRIOR
TO THE •IF•. THE CONDITIONAL BLOCK WILL MOST LIKELY EVALUATE •FALSE• ON PASS
1 ANO •TRUE• ON PASS 2 OR 3.

Consider a program designed for execution on the Model's I, II, or III
· computer with different versions for each. The code blocks particular to a

Model may be included in one set of source files but established as
conditional blocks. For example:

PSEUDO-OPS - CONDITIONALS
4 - 13

Assembly Language Pseudo-OP Codes

ff t~Dll MOIJ3
block of code for Model l or Mode·i Ill
ENOif
IF M002
block of code for Model II
ENDlF

and all that 1s neccessary to invoke a "custom" assembly is to set one of the
conditional •switches" to TRUE and the others, FALSE.

Conditional segments can also be nested, in case coq>licated logical
constructs are needed or in case a conditional segment itself has a
conditional sub-segment. For example: ~v

IF expression!
IF express1on2
ENDIF .

ENOIF

is a twoQ1eve1 conditional. Conditional segments can be nested to sixteen
(16) levels although you will rarely find a need for more than three.

The conditional construct of IF-ELSE-ENDIF may be used. It is coded as
follows:

IF expression
code block le
ELSE
code block 2.
ENDIF

which implies that if "expressfonti 1s "ffiUE 9 code b'!ock l assembleso If
"
1tt;(r,lr'essfrm~ i:;, fALSE~ then codr~ bfod: 2 wi1'1 be cil.SS!?,t!!.bl~d~ n1e fLSE
construct is not requ.ired in. a conditional but may be used where you have two
alternative segments that can be based on one switch. For instance, if your
program has only two "switches", GO and NOGO, your constructs could be either
of the following:

Ir Gi!J'
code block l
£NDIF
IF NOGO
code block 2
ENDIF

ff GO
code block 1
ELSE
code block 2'
ENDIF

P~UDO-OPS • CONDITIONALS
,,i; ,,.. l1l' ' ,, ' h

.J

r

Assemly Language Pseudo-OP Codes

As mentioned earlier, the IF argument can take one of three forms. The
conditional structures. of these are as follows:

•••

---Type I--- -----Type II------ --Type III--
IF exp IF xx{$} expl,exp2 IFyy 1 abel
• . .
code segment code segment code segment .
ENDIF

{$}

•yy•

. •
ENDIF ENDIF

can be •LT", •EQ", or "GT• representing less
than, equal to, or greater than cond_itions
respectively when coq,aring •explN to "exp2•.

,The 11 $11 is specified in macro coq,arisons with
the expressions treated as strings (see the
chapter on MACRO PROCCESSING).

can be 11 DEF 11
,

11 NOEF 11
, or "REF" representing

whether 11 label II has been defined, undefined,
or referenced but undefined.

I
I
I
I
I
I
I
I
1.,.1'
I
I
I
I
I
I
I
I
I
I
I

•••

Type II - IFxx

The Type I constructs have already been explained in detail. Among the
Type II constructs, using 11 IFLT 11

, if the value of expression 1 is less than
the value of expression 2, then the conditional code segment will be
assembled. Using •IFEQ", the conditional code segment will be assembled only
if expression 1 and expression 2 have equal values. The 11 IFGT" pseudo-OP will
assemble the conditional code segment (i.e. result in a TRUE condition) only
if expression 1 has a value exceeding that of expression 2. The last
possibility is •IFNE•, which will cause the assembly of the conditional
segment if the expressions are not of equal value.

If, for instance, you want to ensure that a program does not assemble
code past a particular address (maybe it would clobber another routine), then
the ERR pseudo-op could be used in conjunction with IFGT to force an assembly
error as follows:

IFGT $,MAXADDRESS
ERR Program is too long!
ENDIF

which compares the current value of the program counter (PC) to some
previously specified maximum address. Once the PC exceeds this maximum value,
the condition evaluates TRUE resulting in an assembly of the segment. The
11 ERR 1

' pseudo-OP is used to force an assembly error.

• PSEUDO-OPS· CONDITIONALS
4 - 15

Assembly Language Pseudo-OP Codes

Type I II .. IFyy

Among the Type III constructs, "IFDEF LABEL" will evaluate TRUE if

"LABEL" has been defined prior to the evaluation of the IFDEF on each
assembler pass. 0 IFNOEF LABEL" will evaluate TRUE if 11 LABEL 11

· has NOT been
defined prior to the evaluation of the IFNDEF on each assembler pass. 11 IFREF
LABEL" will evaluate TRUE if 0 LABEL" has been referenced but NOT defined
prior to the evaluation of the IFREF on each assembler pass.

The Type III constructs will find greater use when working with
libraries of code. For instance, if a code segment is a specific routine and
is surrounded with an IFREF-ENDIF ,conditional,· the routine will only be
as:s,3ml.."i'!ed -if 1J?"i rw to the s~gmr::ntF the ci·1 ~t!r~d 11 has hecri)~efer·enced but not?
J1f~t: 1:i~fined. If 11 1abe1i1 fa the entr:1 p(;·lnt symbol to the roLJtfrH:~ 9 then the
routine will be assembled if it is needed. In a similar manner, you may have
a library routine that is always to be placed in your program unless its
"label" has already been defined in some alternate routine. Surrounding it
with the IFDEF-ENDIF conditional will inhibit its assembly if your program
has defined that label.

Suppressing FALSE Conditionals

·-------------~---------------
·-If during the listing pass, you want to suppress the listing of certain

conditional segments that are not assembled (i.e. they are evaluated as
FALSE), use the following sequence of operators:

*LIST OFF
IF expression
""LIST ON
code segment
*LIST OFF
ENDIF
""LIST ON

~ith this sequence, the "IF 11 and "ENDIF" lines will always be suppressed. The
c.ooditional block wi 11 · only:·betJi sted,,•if ·: the: cond1 tion ·,betng··•.-evaluated :1s
logically TRUE. If all''FALSE·conditicmal $~gmetlts are no·t;;to·be listed~"·tnen
you may use the ~ssembler "-NC" switch which inhibits the listing of all
FALSE conditionals - including the IF-ENDIF statements.

ENOIF

Very little has been said about the "ENDIF" statement. Very little need
be said. Each 14 IF" statement must be matched up with a corresponding "ENDIF".
The "ENDIF" is needed to define the scope of the conditional code block.

l'SEUDO-QPS - CONDITIOOALS
• 4 - 16

.,,

.~ ...

Asseai>ly Language Pseudo-OP Codes

PSEUDO-OP COM
•••••••••aaaa•

This pseudo-OP is used to generate a comment record in the object code
file. Its syntax is:

•••
I
I COM <string>
I
I <string> is the information to be placed as a comment.
I
•••

""" An object deck conment block can be generated within the executable
object code file directly by usin.g the 11 COM 11 pseudo-OP. The co11111ent string
must have a length less- than 128 characters. As can be noted, the conment
string must be enclosed in angle brackets. The closing bracket may be
omitted. If lower case characters are desired, then single quotes must
surround the angle brackets. Neither the quotes nor the angle brackets will
be a part of the comment record.

The 11 COM 11 pseudo-OP will generate a comment block in the object file of
the format X'lF' followed by the string length, followed by the string
itself. A typical use would be to place a non-loading copyright statement in
an executable object code file. For example:

COfw!_ '<Copyright (c) 1982 by Roy Soltoff>'

will produce the comment record which would be viewed if the file were
1 i sted.

The generation of· the "COM" object code record wi 11 be inhibited if the
assembly is performed using the 11-CI" switch. A binary core-image file can
not have a non-loadable record.

PSEUDO-OP ERR
•••••••••••••

The "ERR" pseudo-OP is used to force an assembly error. Its syntax is:

······························••=••••=•••===••········••=••····
ERR {message}

message is an optional message to inform what is wrong.

a•••========•==•====•===a
This pseudo-OP forces an immediate warning error

optional message. It is commonly used in a conditional
trapping.

• Miscellaneous Pseudo-OPs
4 - 17

and displays the
block for error

Assembly Language Pseudo~OP Codes

PSEUDO-OP MACRO

····••=••· .. ····
The MACRO pseudo-OP is used to define the prototype of a MACRO model.

Its syntax is:

mname MACRO {#parml}{•dfltl}{,lparm2{=dflt2}}{, ••• }

dfltn

is the MACRO name used to refer to the MACRO

are dunmy parameters of the MACRO which will be
replaced by actual parameters during the MACRO
invocation.

are optional defaults to be used for the dumy
parameters when a parameter is not provided in
the MACRO invocation.

MACROS are an extremely powerfu 1 tool in· an assembler. It provides great
convenience in writing programs in building block form. For this reason, an
entire chapter has been devoted to MACROs. You should refer to ·-the chapter
entitled, MACRO PROCESSING, for information concerning the use of MACROs.
Suffice 1t to say here that MACRO invocations can be nested to eight lev~rls,· .
parameters may be passed by position or by keyword, and a special operator is
avai 1 ab le to test the length of parameter subst1 tutions.

PSEUDO-OP ENDM .. ,•.
This pseuqo-OP is used to specify the scope of a MACRO model. It 1s used

much like the uENDIFu. Its syntax is:

····························••=•=••·············•=••···········
mname MACRO parms

model statements
ENOM

•••

Misccfi l aneous Pseudo-OPS
4 - 18

\

.. /

Assembly Language Pseudo-OP Codes

LISTING PSEUDO-OPS
••••••••••••••••••

Four pseudo-OPs are available to control the assembler listings. These
are: .PAGE, SPACE, SUBTTL, and TITLE. Their syntax is:

•••

PAGE {OFF}

SPACE n

SUBTTL {<string>}

TITLE <string>

OFF is an optional parameter for PAGE ta suppress
the listing of the PAGE statement.

n specifies how many line feeds to generate.

<string> is the title or sub-title string to appear in
the listing headings.

····~··
A new page can be forced to provide separation of routines, modules,

etc. by using the •PAGE• pseudo-op. This pseudo-OP will be ignored if 1t
appears between -At.IST OFF and 'll1.IST ON. "PAGE" accepts an operand of •OFF• to
suppress the listing of the line containing the PAGE pseudo-OP (i.e. "PAGE
OFF" will issue the form feed but suppress printing of the line containing
the •PAGE" pseudo-OP).

"SPACE n" performs line spacing whenever the "SPACE" pseudo-OP is used.
When assent>led, "n" is the nuni>er of lines to space and is interpreted as
modu'lo 256. The line containing the SPACE pseudo-op is not displayed. This
pseudo-op also will be ignored if it appears between -At.IST OFF and "'LIST ON.

A sub .. t'ltle to a heading is permitted with the 11 SUBTTL II pseudo-OP. The
subtitle string length can be from zero (0) to 8~ characters in length. A
zero length indicates that sub-titling is disengaged.

Lower case strings can be maintained by the use of single quotes.
surrounding the angle brackets. You may change the subtitle by using
additional "SUBTTL• pseudo-OPS throughout the text. Subtitles will appear on
the first page following the "SUBTTL 11 pseudo-op. A "PAGE" pseudo-OP following
a 11 SUBTTL• will force the subtitle to appear immediately. If the "SUBTTL"
text string is null (of zero length), then subtitling will cease on the
subsequent page. A line will also be skipped between the subtitle and first
printed text line on the page. Where many *GETs are .being used, you may want
to establish a sub-title for each to provide a visua1 indication on the
listing. For exafl1)1e: ·

• .. Miscellaneous Pseudo-OPs
4 - 19

Assembly language Pseudo-OP Codes

SUBTTL '<Module B - initialization routines>'
PAGE OFF

*GET MOOULEB:l
SUBTTL '<Module C - data extraction routines>'
PAGE OFF

*GEt MOOULEC:l

will print the sub-title on each page of the listing associated with MODULES.
Ideally, each module should be preceded with a SUBTTL statement.

The "TITLE 11 pseudo-OP automatically invokes -a page heading and adds the
title to the headings of assembler listings. The title string is limited to
28 characters and only one "TITLE" is accepted. The left and right caret's~
(angle brackets) must be entered but are not output in the listing - they
serve only to delimit your title string. The title line will include the EDAS
version, the date and time retrieved from the system, your title string, and
a page number [page number is limited to the range <1-255> and will wrap
around to zero if more than 255 pages are printedJo For this reason, if you
use i title~ it is advisatbh to S<:!t. G.trrE i:nd TIME prior to executing the
Editor A:ssemb lie:r. A Hne \Id 11 be sidp1:1,ed ,}etvJeen tha t'it1e and start of
printed text (or subtitle if used). Lower case titles will be maintained by
surrounding the angle brackets with single quotes as in:

TITLE '<This is an UC/le title>'

The first "TITLE" pseudo-OP found in the text will be used for titling.
Any other "TITLE" pseudo-ops wi 11 be ignored.

~· :' ','

'' ' !. \"-'•! t:.:

Miscellaneous Pseudo•OPs
,,,• 4 .. 2(1,

-

·,, _,,,.

;\

'-··

Assembler Directives

ASSEMBLER DIRECTIVES
••••••••••••••••••••

The MISOSYS Editor Assembler, EDAS Version IV, supports five assembler
co11111ands. In contrast to source ·statements which are translated to machine
langµage, these directives are "conversation" to the· assembler. Each directs
the assembler to behave in a particular manner or perform a specific
function. The directives, by themselves, do not generate any machine language
code - they merely act as "convnands• to the assembler. Each •conmand• must
start in column one of a source statement line, and must start with an
asterisk (*). Only the first character of each directive is significant. The
entire directive "word• may be entered, or the directive may be abbreviated
to its first character. The assembler directives are:

•••

trGET file

""LIST OFF

"'LIST ON

"MOO exp

"'PREFIX exp

*SEARCH lib

Causes the assembler to begin reading source
code from th~ "file•.

Causes the assembler listing to be suspended,
starting with the next line.

Causes assembler listing to resume, starting
with this line.

Advances the "module• character substitution
string and optionally sets/resets the prefix.

Establishes or disengages a prefix character
for the MACRO ~ubstitution string.

Invokes an automatic search of the Partitioned
Data Set (PDS) "lib" to resolve any undefined
references capable of being resolved by PDS
assembler source member modules •

•••

•
DIRECTIVES - GENERAL

5 - 1

Assembler Directives

'li'6ET f1lespoc
lllllllllllll&llllllilllllllllllll818

This directive invokes assembly from a source disk file. Its syntax is:

•••

*GET filespec

f11espec Causes the assembler to begin reading source
code from the file, 11filespec• a

,..,1
This directive tells the assembler to tell1)orar1ly switch its source

assembly to the file identified as· •filespec", and use it to continue the
assembly. A default file extension of "ASM" will be used if none is provided
in the directive statement. The file itself can be headered and/or numbered,
as EDAS will automatically detect its type and adjust accordingly. When the
end-of-f1le is reached, or an assembly language "END• statement is read,
assembly automatically resumes from the next statement following the
statement which invoked the ••GET•. Any •END" statement read during the "GET
process will be ignored as the program end. The only •END" accepted will be
that 1n the text buffer.

)

"*GETs• can be nested to five (5) levels. That is, a statement in memory .-.
can GET a file which GETs a file which GETs a file which GETs a file which
GETs a file. This assembler d1rect1ve 1s extremely powerful. It· can be used }
to provide the capability of assembling large programs which are stored on
disk in modules, since more than one "'GET may be 1n the text buffer or
•gotten• file.

The text buffer can be co111>osed of nothing but *GET statements (and one
END statement) which will provide maximum space in the text buffer for
generation of the symbol table. For exaJ'll) le, the following could represent
the source linkage needed to assemble a program called "PARMDIR/CMD":

; PARMOIR/ASM - J4/i7/82
•*•*•*
; Linkage to assemble PARMDIR
;*•*•*
*GET PARMOIRl
llrGET PARMDIR2
"'GET PARMDIR3

ENO PARMDIR

• 5 - 2

Assea>ler Directives

LI.ST ON/OFF
•••••••••••

This directive is used to suppress the listing of blocks of code. Its
syntax is:

••••••••••••••••m•••••••••••••••••••••••••••••a••••••••••••••••
I

11.IST off/on I
I

Off Causes the assembler listing to be suspended, I
starting with the next statement. I

I r,
ON Causes assembler listing to resume, starting I

with this statement. I
I

•••
The pair of directives, ••LIST OFF" and "LIST ON•, can be used to

suppress the listing of a block of code. Once the ••LIST OFF" is invoked, all
statements following will not be listed to the display or the line printer
(if assembler switch· -LP is specified). The directive u*LIST ON"
re-establishes standard listing. An exception to the suppression is that any
assembler source statement containing an assembly error will be listed along
with •its appropriate error message. In this manner, you can use an •*LIST
OFF• directive at the beginning of your assembly source (to suppress all
listing) and lines containing errors will be forced to be displayed by EDAS.

Exaq,les of the "'LIST directive:

·-------------------------------
*LIST OFF

DB
*LIST ON

--LIST OFF
DB
LO

--LIST ON

'This line will not be displayed!'

'Only the next line will be displayed!'
(M,l"{I

• DIRECTIVES - LIST
5 - 3,

Assemler D1rect1ves ·•·

"'MOD expression
•••••••••••••••

This directive is used to increment a character substitution string for
the purpose of simulating local labelso Its syntax is:

•••

"'MOD (expression}

Advances the •module" character substitution
string.

expression 1s an optional expression to specify a prefix
character to the substitution string or reset
the current prefix.

····················~·-··
The •*Moo• directive will increment a string replacement variable each

time the directive is executed. The string will replace the question mark,
•1•. character 1n labels and label references found 1n any 11ne asserr~led
from a *GET or -SEARCH file. Its use 1s essentially applicable to subroutine
11brar1es where dup 11cat1on of · labels could occur. By specifying the ••Moo•
directive as the first statement of each module of code and by~sing a
question mark 1n labels, you can construct source subroutine libraries for·· • ., -,
use 1n your programs without having to worry about duplicate labels occur1ng.
Unless at least one •*MOD" statement 1s specified, the question mark w111 not
be trans 1 ated.

Labels such as $?~~1 will have the •1• replaced with the current •MOD•
string value. Thus, a •*Moo• directive preceding each module will force $?~01
labels in each module to be distinctly named by having the question mark
replaced with the substitution string. The •MOD• string value cycles from
A-Z, then from AA-AZ, BA-BZ, ••• , ZA-ZZ. This will allow for a simulation of·
•local 11 1 abels. -Remember, the •1 11 substitutions wi 11 only be made to those
source lines fetched from a *GET or *SEARCH file, not from statements
resident in memory! It really was des1g~ed that way folk's, it's not just a
11m1 ta.ti on.

If you need more than the 7flJ2 unique string values generated by a
single/dual alphabetic string (26*26+26), you will have to specify a "MOD
prefix". The prefix invokes a user-specified third character for the
substitution string. The "*Moo• directive provides for the assignment of the
character prefix to the substitution string~ You control the prefix. For
ex~le:

1rMOO I$'

assigns the character "$ 11 to prefix all 11MOD 11 substitutions. "Once invoked,
you can change to any other character by another "*MOD• command or remove the
prefix by entering an expression whose value is zero.

DIRECTIVES - 1iMOD
5 • 4

l
I

Assellbler Directives

*PREFIX expression•. ,
This directive gives you the capability of specifying a constant third

character to the MACRO substitution s·tring. Its synta~ is:

••••••••••••••••••••••••••••••••••=••a•••••••••••••••••••••••••

*PREFIX expression

expression establishes or disengages a prefix character
for the MACRO substitution string.

I
I
I
I
I
L-1

···~·········
The Mac;ro substitution string can be prefixed with a user-entered

character constant •.. This is achieved by using the ••PREFIX• assenmler
directive. The expression character or value entered in field two becomes the
prefix character. It must be a character that is valid for assembler source
labels. For exa,q:>le,

*PREFIX 1 $ 1

will cause MACRO local label string substitution to be expanded as •SAA•,
•SAB•, •SAC•, ••• A binary zero value will eliminate any prefix character

--,\ once invoked. For exall1)1e,

\ *PREFIX j

will disengage the MACRO string substitution prefix character.

For more information on the use of the MACRO prefix character, see the
chapter on the MACRO PROCESSOR.

• DIRECTIVES - *PREFIX
5 - 5

Assembler Directives-~

*SEARCH f11espec
••••••••••••••••

This directive is used to invoke an automatic search of a Partitioned
Data Set (PDS) source library. Its syntax is:

*SEARCH f1lespec

f11espec: Invokes an automatic search of the PDS
11filespec/LIB 11 to resolve any undefined
references capable of being resolved by
PDS asserri:>ler source member modules •

•••
This assembler 11*SEARCH filespec 11 directive 1s a very powerful feature.

It will invoke, a directory search of the Partitioned Data Set •filename/LIB•
for all members that will resolve undefined references 1n the source
assembly. This provides a source library structure for EDAS. •*SEARCH• will
require two (2) levels of "*GET" nesting. Also, restrictions prevent a
11*SEARCH 11 member from using a 11*GET 11 directive or another "*SEARCH" directive
(such a request would be ridiculous anyway). The library members must be
lowest level. The default file extension for searched files is ~LIB•.

The PDS source library constitutes members coo~osed of one or more
routines. Each routine that needs to be automatically fetched should have its 1

/

routine name (the label _field entry) in the PDS ment>er directory. This is
accomplished by naming the source file to be appended to the library the same
name as the routine or by appending using a MAP. Details on constructing and
using Partitioned Data Sets is included with PDS documentation. The PDS
utility 1s available separately.

EDAS will search the PDS library and locate a member name that matches
up with a symbol table entry. If that symbol is currently undefined, the
source member w111 be accessed and read just as if it were the target of a
"GET•. EDAS will verify that the meni:>er just accessed did in fact define the

· symbol invoking its access. If a member is accessed and there exists no
symbolic label in the meni:>er that has the same name as the meni:>er name, EDAS
will abort the assembly and advise of a library error by displaying the
message:

Member definition fflrror~ ?ilesoec(mewher)

At the conclusion of the member£ s source code, EDAS w1 il continue to
search the PCS library until 1t exhausts all PDS meni:>ers. There are no
restrictions on the order of ment>ers. Routines in one meni:>er can reference
other members with colll)lete disregard as to any ordering of entries in the
PDS. EDAS will correctly access all members required.

•

DIRECTIVES - *SEARCH
5 - 6

Asselllbler Directives

-~ Where more than one routine is in a member, each should be surrounded

'··

by IFREF's/ENDIF and each should have an entry in the member directory (you
must use the MAP option of PCS to provide multiple entries to a member). This
will b~nefit by not having needless routines appear in your object code
output. For example, the following depicts two routines stored as one member
in a PDS.

; Entry for routine entitled "MOVE"
IFREF ftlVE

MOVE •
• .
ENDIF

;Routine of code

; Entry for routine entitled •SHIFT•
IFREF SHIFT

SHIFT .. ;Routine qf code
..
•
ENDIF

If your source code references 11 SHIFT 11 but not "MOVE", as long as both
"SHIFT" and "MOVE" are member entries in the library PDS directory, a
•*SEARCH• of the library will access the member and assent>le only the "SHIFT•
routine. Yoo should read the section on the "IFREF• conditional in the
chapter on ASSEMBLER PSEUDO-OPS to understand the evaluation of the •IFREF•.

DIRECTIVES - *SEARCH
5 - 7

• /

I
I

Macro Processing

-~

) WHAT IS A MACRO?
••••••••••••••••

In virtually all programs, you will find particular sequences of code
that are repeated. These sequences might be termed short routines~ They could
be so short that the overhead needed to set them up as CALLable routines is
ineffective. Or, they could be longer routines -that ,just ,.cannot be
constructed as CALLable segments. You may even want a code sequence to be an
in-line assembly in contrast to a CALLable routine for the purpose of fast
execution. By far the most needed function, is to be able to have
parameterized routines - algorithms that operate on different values each
time the algorithm is invoked. ·

.
There are at least three ways to deal with routines that are rep~ted in

a program. You can <I>nsert the11 entire routine wherever it is needed. You
could also <C>opy it from the first appearance to wherever you needed the
routine. Or you could establish the routine as a macro. The first method is
obviously tedious on ·your fingers. The second, is not tiring, but could take
up more source storage than is desirable. Also, if you decide to change the
routine•s algorithm, having many copies in a program can be cumbersome to
update.

The third method mentioned is the use of macrose Consider the following
com9np 1 ace sequence .of code:

LO
LO

HL, VALUE
(MEMORY),HL

How many times is this little sequence repeated in your programs? Five? Ten?
If we set up a macro near the beginning of our program that looked something
like this:

STOR MACRO
LO
LO
ENDM

#VAL,IMEM
HL,#VAL
(IMEM), HL

;Macro to store 11 VAL II into memory
;Get value into HL
;Load value into memory
;End of the macro

then we could perform the above two statements with one macro call as
follows:

STOR VALUE,MEMORY ;Invoke the macro

The first par:t of the example, defines a macro called 11 STOR 11
• This is done

exactly once per program! If we save our macros in a macro source file, each
of our programs could "*GET MACROS"; thus, we would not have to even manually
enter the macro into each program. ·

We invoke the statements defined in the macro by specifying the macro
name AS IF IT WERE AN OPCODE. Using the macro invocation method, we can save
storage space and introduce structured techniques to our coding. Notice that
we have used some fictitious names when the STOR macro was defined. These
names are cal led 11 du11111y" parameters. They serve to provide a means to pass

USING MACROS
6 - 1

Macro Processing --

--actual parameters . when the macro is invoked. It is through the dummy ·\
parameters that the real power of the macro 1s utilized. During the macro \
invocation, the model statements are expanded with substitutions for the
dumny parameters that are provided in the macro call.

MACRO DEFINITION
••••••••••••••••

The format for a macro definition is illustrated in the following
example:

···············~·-···
MOVE MACRO

LO
LO
LO
LDIR
ENDM

lparml,lparm2•dflt2,lparm3
HL,lparml
DE,lparm2
BC,#parm3

The macro definition consists of three parts: a macro prototype, a macro
model, and the ENDM statement. The prototype is used to specify the macro
name and the dunmy parameter names used in the n:»del. Default substitutions
may be specified in the prototype to be used if the corresponding parameter
is not passed in the macro invocation. The macro model contains all of the
assembler statements to be generated when the macro is invoked. The model is
sometimes called the macro skeleton or template. The dummy parameter names
occupy the positions where the actual parameters will be placed by the macro
processor in EDAS. The third part, the ENDM statement, is used to indicate
the end of the macro mode 1 • ·

When a macro is defined, it is not assembled into your program. The
macro prototype 1s parsed and analyzed. Th~ macro definition is then stored
in a compressed format within the macro storage area. Conments appearing with
the macro definition are not .stored. That means that if the macro expansions
are listed in the assembler listings, they will not include the conments -
only the definition w111.

•

USINS MACRO$
6 • 2

L.

Macro Processing

-~ Macro Prototype

-

The MACRO pseudo-OP is used to define the prototype of a macro model.

I ts syntax is:

. ····························•=••=•••==•••==••··••=••···········
1111arne

dfltn

MACRO {#parml}{•dfltl}{,#parm2{~dflt2}}{, ••• }

is the macro name used to invoke the macro.
,.

are dunmy parameters of the macro which will
be replaced by actual parameters during the
macro invocation. •f• is a required prefix.

are optional default strings to be used for
the dunmy parameters when a parameter is not
provided in the macro invocation.

I
I
I
I
I
I

·1 ""1

I
I
I
I
I
I

•••

Macros are named just like symbolic labels. The same rules apply. The
length of macro names can range from <l-15>. Special characters<@, S, _> may
be used in the name construct. Do not use the question mark in macro names as
it ~uld conf}1ct with the syni)ol substitution string use made of •1•.

There is no upper limit on the nunber of macro parameters; however, you
can not exceed the length of a standard asserri>ler sourcf statement.
Therefore, the statement length becomes the limiting factor. As is the case
with macro names, the rules for naming dunmy parameters are identical to the
rules for labels. The •dunmy• names are not included in the syni)ol table
generated by EDAS, thus there is no restriction on reusing the same name as a
•dullll\Y• for a label; however, to avoid confusion, it is reconmended that you
avoid using dumy names as symbolic label names.

Default strings can contain any character except the corrma, •,•. The
conma is used as a field delimiter. There is no limit to the length of a
default string other than the limiting factor of the statement length.

Macros must be defined prior to use but can be defined
"*GET files• or memory text.

Macro Model

in either disk

...

Any valid Z-8S statement, EDAS pseudo-OP, or assembler directive (except
••GET• or ••SEARCH•) is valid in the macro model - except the •MACRO•
pseudo-OP (no nested definitions, please).

•
USING MACROS

6 - 3

Macro Proces~ing

ENDM pseudo-OP ____
This pseudo-OP is used to specify the scope of a macro model. It is used

much like the 11 ENDIF 11
• I ts syntax is: , . .,

···~·········~--·····
1111ame MACRO parms

model statements
ENDM

•••
The •ENDM" pseudo-OP must be used to let the macro processor know wt>tt

is the last macro model statement.

Macro Definition Ex~les

This macro will move a block of memory from one location to another. If

the •length" parameter is omitted, then a value of •255• will be used:

MOVBLK MACRO fFM,fTO,#LEN•255
LO HL,fFM
LO DE,#TO
LO BC,#LEN
LDIR
ENOM

This 1s a macro to clear a region of memory (1.e. set to I). This macro
will invoke the MOVBLK macro in a nested invocation:

CLRMEM MACRO #BUF,#LEN•255
LO HL,IBUF
LD (HL),ID
MOVBLK #BUF,#BUF+l,fl.EN
ENDM

This macro will add the 8-bit register •A• to 16-bit register pair •HL•:

ADDHLA MACRO
ADD A,L
LD L11 A
ADC A,H
SUB L
LO H,A
EHDM

USING MACROS
6 - 4

--

·\-::-'

,,

'--

\. --

Macro Processing

There is no requir-ement that a macro must contain dunmy parameters as is
evidenced by the last example.

Incorporating Conditionals

Conditional pseudo-OPs can be specified in macro models. For instance,
say you want the MOVBLK macro to be able to perfonn a non-destructive move (a
destructive move would be where the destination is an address between •from"
and •from+length-1•). You can insert conditional pseudo-OPS to test the
parameters during the assembly of the expansion (labels substituted for #FM
and #TO must be defined prior to invoking the MACRO). Then, only certain
segments of the macro wi 11 be assembled according to the result .,.10f the
evaluation. Analyze the following exaq,le:

MOVBLK MACRO
IFNE
LO
IFGT
LO

MACRO NESTING
•••••••••••••

LO
LOIR
ELSE
LO
LO
LOOR
ENOIF
ENOIF
ENOM

#FM,ITO,#LEN•255
#FM,#TO ;Don't expand if #FM•#TO
BC,#LEN ;Establish the length
#FM,#TO ;Do we LDIR or LDDR7
HL,#FM ;#FM> #TO•> LOIR
DE,#TO

HL,IFM+ILEN-1 ;#TO> #FM•> LDOR
DE,ITO+#LEN-1

The CLRMEM exaq)le depicts a macro that nests a macro invocation. Macros . .

may be nested to seven (7) levels. That is, at any time, macro expansions for
7 macros called in a chain can be pending. It is very important to note that
macro definitions cannot be nested. For instance:

ABC MACRO #PARM
(model statements)

XYZ MACRO #PAAMs, •••
(model statements)
ENDM
ENOM

is illegal and will result in an assembly error. It is entirely correct,
however, to invoke a macro within a macro definition prior to the definition
of the called macro. The called macro must, however, be defined prior to
calling the first, or htghest level, macro. For example:

•
USING MACROS

6 - 5

ABC

MOVE

MACRO
(mode 1
MOVE
(mode'!
l;NOM
MACRO
(rood el
ENDM

Macro Processing

#PARMS, •••
statements)

parm,parm ;call macro ~MOvE•
stiltements)

fp4rml,fparm2,lparmJ
statements)

is perfectly legal. The expansion of the •MOVE" macro 1s not performed during
the definition of the •ABC" macro but rather during the invocation of "ABC".

If macro A "calls" another macro, say B, any dunmy parameter 1n the
macro call of B that matches a dummy in macro A, will be considered part of
macro A and the parameter substitution will be invoked by the parame(er
passed when the user calls macro A •.

MACRO INVOCATION
••••••••••••••••

The invocation of a macro 1s termed a macro "call•. The macro processor
then proceeds to replace. the call with the model statements specified when
the macro was defined. The replacement of the macro. call by the macro model
statements 1s termed the macro •expansion•.

During the exp ans.ton, the •actual"· parameters passed 1n the cal 1
statement are subst1 tu:ted >for the 11 dunmy• parameters which appear 1n the
macro model and which are designated 1n the prototype of the macro. Note that
the actual parameter values are character strings and can be labels,
expressions. or data constants. An actual parameter can even be a quoted
string data declaration if 1ts use 1s designed into the macro model. ·

The entire expanded macro model is listed during the listing pass (phase
two) of EDAS. You may find that you don•t really.want to see these expansions
since the macro definition contains the entire illustration of the macro. An
assembler switch, "-NM• is provided in the <A>ssemble command to suppress
listing of macro expansions. In the case of nested macro calls (i.e. a macro
is defined which ~alls another macro which was separately defined), only the
primary macro call will be listed if the •suppress• switch is invoked.

The substitution of the actual character string parameters for the
dumnys occurs during the macro expansion when the macro is called. Since a
macrQ can have more than one parameter, it is necessary to have a procedure
~h~t sp,£1f1,s ~htsti 4Ctiuil pi!rnter ,orresponds to each duomy parameter.
There are two methods supported 1n EDAS. Parameters can be passed to the
macro expansion when calling by either position or keyword.

U$IN6 MACROs
6 .. 6

-

\

Macro Processing

Positional Parameters

'"Posit.iona'I" parameters are correlated by the position they appear 'in

the macro call. For exall1)1e, if the 11 MOVBLK 11 macro were called by the
statement:

MOVBLK VIDEO,CRT_BUFFER,CRT_SIZE

then the substitution string "VIDEO" would replace every appearance of "#FM•,
the string "CRT BUFFER" would replace every appearance of "#TO", and
•CRT SIZE• would- replace the dunmy parameter, "#LEN". Note that actual
strings· are positionally correlated with the positions of the ~aumy
parameters 1n the macro prototype.

If you wish to omit an actual parameter in a macro call, then you IIIJSt
supply the comma to denote its place. For instance:

SHIFT 42~iH,,10~H

omits the middle of three parameters. Generally, a default would have been
provided in the macro definition.

Keyword Parameters

-----------------·
If the ·nuniler of parameters is large, 1t is sometimes burdensome to

remember the order of the :parameters~ · or "fo;' :pro~1de' the· cbrrect 'inuirber of
conunas if a series of parameters are omitted~· These drawbacks are remedied by
the use of "keyword" parameters. The macro call parameter 11st can identify
the actual parameters by using the name of the dunmy parameter as wel 1. The
keyword syntax is:

······································•==••••=••···············
#dumy•actual parameter

mname lparm2•actual2,lparm3•actual3

•••
If the previous macro call was invoked by keyword parameter

specification, it could look something like this:

SHif-T ILEN§l@0H,IFM~4200H

USING MACROS
6 - 7

M1.cro Process 1 ng ·,,

Mixing Positional and Keyword Parameters

A single macro invocation can intermix both positional and keyword
parameters. The point that needs clarification, is what positions are
actually denoted in the parameter list. It is. simply treated. In a mixed
parameter. list, keyword parameters are ignored when considering place
positions. For exa,q:,le, in the following macro call:

SHIFT ILEN•l~~,BLOCK,BUF_START

even though the length parameter appeared first 1n the parameter 11st, since
it was designated as a keyword, it 1s ignored from the positional count and
"BLOCK• is the first parameter with •suF_START• taking up second place. J.9 a
similar manner:

COMP PARM1,IP6•2,,PARM3,IP8•38,PARM4

"PARMl" is 1n position one, the second parameter is omitted (the double
comma), •PARM3" and PARM4" are in the third and fourth positions
respectively. The sixth and eighth parameters have been entered by keyword.

Please note that the parameter list contains five parameters. Thus 1f
you were to use the"%%" operator which returns the nunber of parameters
passed in a macro call ("%%" is described later), it would return a value of
five.

LOCAL LABELS
••••••••••••

So far, all of the exa,q:,les have shown macro models without labels~ What
would happen if we had a macro defined as follows:

FILL MACRO
LO

FLP LD
INC
DJNZ
ENDM

#CHAR,#NUM
B,#NUM
(HL),#CHAR
HL
FLP

We would have a problem because every time the macro was called, the label,
•FLP•, would be used. If •FILL• was invoked more than once, the assenbler
would generate MULTIPLY DEFINED SYMBOL errors on each expansion. We have to
be able to use labels, but we need to find a way to be able to make •unique•
labels on each macr-o exp~s1on. . ·

EDAS provides a facility for doing this by keeping a substitution string
which 1s changed each time a macro 1s expanded - any macro. The substitution
string replaces the question mark character, •1•, during the macro expansion
whenever it appears outside of single quotes in a macro model statement. Each
time a macro 1s expanded, the •value• of the string will be changed. The

USIH6 MACROs
6 .. 8

-l
J

'\
--1

\...._

Macro Processing

•value• starts with the single letter "A", changes to "B•, ••• , "Z", then
increments to the two-letter strings, "AA"," and changes to 11AB•, "AC•, ••• ,
.. BA11

, •••• "ZZ" each time a macro call is made. Thus, by incorporating the
question mark as one of the characters in the label of a macro model
statement, it can be used to uniquely identify labels local to a macro. You
may want to standardize the way you create labels to ensure that uniqueness
is maintained. For example, if you use macro labels of the form, "$$?1•,
"$$?2•, ••• , these will expand to "$$AA1", 11$$AA2", ••• within one macro
during its first expansion. The second macro expansion will create •$$AB1•,
•SSAB2•, ••• You can then repeat the use of .•$$?1•, "$$?2", ••• , in another
macro since for each macro expansion, the substituted string will be
different.

The substitution string will be different from the ••Moo• directive
substitution but 1s similarly used. Macro expansion substitution of 11?• takes
precedente ov~r -MOO substitutiona In the case of nested macros, each nest
level will have its own unique substitution {since each nest is a macro c~n
which invokes an expansion).

The macro substitution string can be prefixed with a user-entered
character constant. This is achieved by using the "*PREFIX• asseni>ler
directive as in:

*PREFIX character-expression

where the expression character or value in the argument becomes the prefix
character (it lll.lst be valid for assembler source labels). For exa.111>le,
••PREFIX •s•• will cause macro local label string substitution to be expanded
as •SAA•, •SAS•, •SAC•, ••• A binary zero value will eliminate any prefix
character once invoked.

By using the question mark string substitution specifier, the previous
macro would be defined like this:

FILL MACRO
LO

SS?l LO
INC
DJNZ
ENOM

ICHAR,#NUM
B,#NUM
(HL), #CHAR
HL
$$?1

• ,. USING MACR.Os
if ... 9'

M1ero Processing

STRING COMPARISONS
••••••••••••••••••

It is sometimes desirable to be able to test within a macro model, the
exact string passed as a parameter. Four conditional pseudo-OPS have been
added strictly for string comparisons within macro processing. _These are:

•••

!FLT$

IFEQ$

IFGT$

IFNES

str1ngl,str1ng2

str1ngl.str1ng2

str1ngl,str1ng2

stringl,str1ng2

TRUE 1f str1ngl < str1ng2

TRUE 1f stringl • str1ng2

TRUE 1f string!> string2

TRUE if str1ngl <> str1ng2

···················~···
These pseudo-OPs provide TRUE/FALSE evaluation in the co111>arison of

stringl to string2 (like the non-"$" pseudo-OPS do with mathematical
expressions). Obviously, hard encoding of both stringl and str1ng2 would be
nonsense! Aha, he said ••• If we use a macro dunmy parameter, it will be
substituted by the actual parameter string passed 1n the macro call
expansion. This means that the macro itself can test the parameter string in
a limited manner. For exaq,le:

IFNE$
LD
ENOIF

ITO,(DE)
DE,#TO

as part of a macro model, will have the "ITO" replaced during the expansion.
The test becomes dynamic! The dunmy parameter can be either stringl or
string2 - it doesn't matter.

These string conditional pseudo-OPs can only be useful in macros. That's
because the evaluation, to make sense, has to be dynamic.

•

USING MCROi
6 - 1;

-

\ ··•

'--

Macro Processing

TESTING STRING LENGTHS
••••••••••••••••••••••

Another feature available in the macro processor is the per- cent sign
11%11 operator. This operator is used to recover the .length of the passed
parameter string and the number of parameters passed in the macro call. Note
that the limitation for the use of the 11%11 operator, is that it is acceptable
only fqr parameters of the current macro expansion. That means that you can't
test for lengths outside of the current ma~ro if you are nesting macro calls
(macros cannot be recursive!). The operator can be used like these exan.,les:

;loads B with the length of #PARM LO B,SIPARM

IFGT %#PARM1,6
,..._

;Restricts pannl to a length <l-6>
ERR Pann too longl
ENDIF

IFLT %%,4 ;This macro requires 4 actual parms
ERR Missing required parameters!
ENOIF

As can be noted, the 11%% 11 operator will return the nuni:>er of parameters
passed in the current Macro call. When a dummy parameter name (including the
"# 11 prefix) follows the per cent operator, the length of the parameter string
1 s returned.

These ~alues can be tested arithmetically to produce a TRUE/FALSE result
(as was just demonstrated), or they can be used directly to represent logic
TRUE/FALSE conditions. Realizing that if a parameter was not passed in the
parameter list of the macro call, its length would be zero. A zero is also a
logical FALSE. EDAS will accept as TRUE, any non-zero value (in normal use of
TRUE/FALSE specifications, 11-1 11 is recommended for TRUE to maintain proper
evaluation of the ".NOT." operation). Thus, the string lengths can be
minimally used to test if the parameter was not passed (%1parm•0•FALSE) or
the parameter was passed (%1parm<>0•TRUE).

CONCATENATING MACRO LABELS
••••••••••••••••••••••••••

You can concatenate a string to a dummy parameter name by connecting it
with the concatenation operator, "S&". For instance, the model statement:

IFREF INAMES&L

will have the 11 #NAME" replaced by the MACRO call substit1Jtion string appended
w1th the letter ML~.

•
USING MACROS

6 - 11

I

-"

'

Editor Asselli>ler Commands

The EDAS Version IV Editor Assembler can perform the following co11111ands.
These conmands may be typed after the prorq:,t symbol 11 >11

• The prorq:,t symbol
appearance indicates the "convnand mode" of the Editor Assembler. The
following list contains all command mode instructions recognized by the
Editor Assembler with a brief description of each.

A

B

C

C

D

E

F

H

I

K

L

M

N

p

Q

R

s
T

u

V

<A>ssemble source currently in the text buffer.

ranch to a specified address.

Globally <C>hange a string of characters (STRING!) to another string of
characters (STRING2) throughout a range of text lines.

<C>opy a block of lines to another location.

<D>elete specified line(s).

<E>dit a specified line of text.

<F>ind a specified string of characters.

Provide <H>ard copy output (line printer) of a specified range of text
buffer lines.

<I>nsert source text line(s) at a specified line with a specified line
null'ber increment.

<K>ill a file from a dis~ette.

<L>oad a source text file from disk.

<M>ove a block of text from one location to another.

Re<N>ull'ber source text lines in the text buffer.

<P>rint a specified range of source text code currently in the text
buffer.

<Q>uery a directory from the designated drive.

<R>eplace lines currently in the text buffer.

<S>witch the upper case/lower case conversion mode.

<T>ype source text lines without line nunt>ers to a line printer.

Display the memory <U>tilization - bytes used by the text, bytes
available, and the first free address.

<V>iew a file without loading it into the text buffer.

• COMMANDS - SUMMARY
7 - 1

Editor Assembler Comands·

<W>rite the current text buffer to disk. w

X

z
l

e<X>tend the text buffer by eliminating the Assembler.

Command reserved for user.

•

Alter printed lines per page and page length.

Send a message to a Job Log (LOOS' only) •

CLEAR Clear the CRT screen.

UPARW Scroll up one source text line.

DNARW Scroll down one saurce text line.

LTARW BACKSPACE key

RTARW TAB key

SRARW Page forward one screen.

,.

PAUSE Performs a functional pause of any operation: <SHIFT@ (Model I/III)>
<HOLQ (Model II)> for the PAUSE function).

UPARW •> the up-arrow key
DNARW •> the down-arrow key
LTARW •> the left-arrow key
RTARW •> the right-arrow key
SRARW •> the shifted right arrow key (FZ on Model II)

•

co~~DS - SU~>RY
7 - 2

-... ,./

\

\

'-

Editor Asseui>ler Coamands

The <A>sselTt>le comand is used to invoke the assembly of your source
streai:n from memory and optionally, disk files (when "*GET filespec 11 or
11*SEARCH library11 is used in the source stream). The <A>ssemble comand is
also used to create a cross reference data file for downstream processing by
the XREF/CMD program which will create a complete symbol cross reference
listing. The syntax of the <A>ssemble comand is:

•••

A {filespecl/CMD}{,filespec2/REF} {-SWITCH {-SWITCH} ••• }

filespecl is the filespec to be used for the object code
file generation. If the file extension is
omitted, 11/CMD" will be used (see -CI).

f11espec2 is the filespec to be used for the cross ref-
erence data file. If the file extension is
omitted, "/REF" will be used.

Switches:

-ct used to generate a Core-Image object file.

-IM used to assemble the object code Into Memory.

-LP used to generate a Listing to the Printer.

-NC used to suppress the listing of conditional
blocks evaluated to be logically FALSE.

-NE used to suppress the listing expansion of data
declaration pseudo-0Ps.

•NH used to suppress writing the header record to
the object code file.

-NL used to suppress the listing pass.

-HM used to suppress listing MACRO expansions.

-NO a dumny switch useful as a default switch in
JCL execution of EDAS.

•SL us~d to suppress local label listing

-WE used to pause the assembly listing and Wait if
an Error occurred.

Parameters continued next page
····················••==•========•==••==•===••==••=•••=••••=••·

COMMANDS - ASSEMBLE
7 - 3

Editor Assembler C01111ands

•••

-wo
-ws

-XR

used to assemble With Object code generation.
I
I
I·

used to generate a sorted symbol table listing I
during the assembly process. I

I
I
I
I

used to generate a cross reference data file
for subsequent processing by XREF/CMD.

•••
The <A>ssemble comand can be used to generate object code, into either

an executable object code file (/CMD) or a binary core-image object code 'P'ble
(ICIM). Your program can also be assembled directly into the unoccupied
memory region when the memory locations to be occupied by your program are
not in conflict with storage areas of the assembler, your resident source
code, the MACRO storage area, or the symbol table. .

The source text to be assembled can exist either in memory only, or a
combination of memory and disk files. The in-memory source is considered to
be 1n the "text-buffer•. When your source program is too large to be
contained solely in the text buffer, it needs to be segmented into a
combination of a memory segment and one or more disk file segments. The disk
file segments are accessed during the assembly process by use-of the ••GET
filespec• assembler directive (detailed instructions concerning the use of
*GET. are contained in the chapter entitled •ASSEMBLER DIRECTIVES•).

The following paragraphs describe the conmand line entries and switch
options in detail. Please note that if the EDAS e<X>tend c011111and has been
invoked. the <A>ssemble conrnand will be inoperative. •

Filespecl -------... -
The first filespec on the command line, identified as •filespecl•, is

the filespec to be used for the object code file. Its entry is entirely
optional. When an object code fi lespec is entered, its entry wi 11
automatically 1nv~e the generation of the object code to the disk file.
Another method can also be ~loyed to invoke object code generation to a
disk file by means of the •-wo• switch (see below). If your filespec entry
omits the f1 le extension, the default of •/CMD• wi 11 be used. This default 1s
changed to •/CIM• if the •-cI• switch 1s specified. It is reconmended that
you let the assembler assign the file extension, automatically. It will help
to keep your directories orderly, and there will be less danger of
overwriting a source file with the object code file.

F11espec2

---·-----
The second f11espec on the command line, noted as •filespec2•,

identifies the filespec to be used when writing the cross-reference data. The

COMMANDS• ASSEMBLE
7 - 4

-
)

)

_,

..!L-

. .,

Editor Assefli.>ler C011111ands

cross-reference data generation is optional - it is required in order to run
the XREF/CMD program. EDAS will a~sign a default file extension of "/REF" if
you omit the extension from your filespec. As XREF/CMD will also use this
extension when accepting the file specification, it is suggested that you let
EDAS .assign it. You can also· invoke generation of cross-reference data by
using the "-XR" switch (see below}. EDAS requires the entry of the conma to
recognize the cross-reference filespec as "filespec2". Therefore, if you want
the cross-reference data file but not the object deck file, then either start
the conmand line with the co11111a separator or use the XR switch without
entering the f11epec with the conmand line.

Switch -CI .. __ ., ________ _

The •-cI• switch is used to generate a "core-image• object code file.
Executable conmand files in LOOS are constructed with address information
that the system loader uses when loading and executing your conmand file.
Also, a header record is usually found in a load module object code file.
There are times when you would prefer an object code file without this "load•
and "comment" data. For exa~le, say you want to burn a Programmable Read
Only Memory (PROM) from a file. A core-image file is needed. When the "-CI•
switch is specified, a nulli>er of changes take place in EDAS. First, the
object code file default extension is changed to "/CIM" (note: you must still
enter the filespec or the switch •-WO" to invoke object code generation).
Next, the header record and the transfer address record are suppressed. Any
COM pseudo-OP· statement is, likewise, suppressed. A core-image file needs to
contain contiguous address sequential code. Since EDAS reserves only storage
locations when assembling the DS/DEFS pseudo-OPS, the OS instruction would
cause your object code file to be non-contiguous. Invoking the 11-CI" will
automatically convert all "OS" statements to their corresponding "DC"
statements with a zero value for operand2.

Switch ~IM

This switch will invoke object code generation; however, instead of the
cod.e being written to a file, it is placed into memory starting at the
address specified as the operand of the "ORG II pseudo-OP. The "-IM" switch
will override the entry of the •-WO" switch or entry of "filespecl". That is,
H both 11 ffl•IM"' and "-wo~ (or f11especl) are entered 9 assembly into memory will
occur and assembly to disk will NOT take place.

Your program will not be permitted to overwrite any region below the end
of the text buffer (or macro storage area if macros are being used) nor will
it be permitted to overwrite the symbol table stored in high memory. The
error message,

Me110ry overlay aborted

will be displayed if your assembled program will violate these restrictions.
The assembly will be immediately stopped and EDAS will return to the conmand
ready pro~t. Upon successful co~letion of the assembly to memory, the

4
• COMANOS - ASSEMBLE

1 - 5

Editor Assembler Coa.uads~

message,

Meaory region loaded
XXXX 1s the transfer address

will be disph.;yed9 This does not mean that yo1.1r program assembled without
error .. only th,ei.t the object code generated did mot interfere with the text
buffer or tables created during the assembly process. The NXXXX" field in the
second message will contain the transfer address of the program. It w111 be
listed in hexadecimal.

Switch -LP ---.. ---·-·
· The "·LP• switch is used to send the asserrt>ler listing, error message$

occurring during the assembly of your source code, and the symbol table
listing (if specified by means of the "•WS" switch) to a line printer. EDAS
assembler listings print 56 lines per page and send a form feed at the
conclusion of the 56 lines. If you are generating a listing output and a
properly paged display is desired, it is suggested that you set your paper to
begin printing at the sixth line from the top of the page (which assumes
paging parameters set at 56 print 11nes ~d 66 11nes page length O the
default). This will provide· five blank lines for a top margin, and five blank
lines for a bottom margin.

If you are using other than 11" form paper, use the EDAS ··command •<1>•
to alter the paging parameters to suit the specifications of your printer.

Switch •NC

-------···
••I il

Conditional assembly (see the chapter on ASSeMBLER PSEUDO-OPS) can
greatly ease the maintenance of programs designed to work with n.iltiple
conftgurations of hardware. However, it 1s unnecessary to •see• the source
statements within conditional blocks that are logically "false". Th1s •-NC•
switch is provided to have No "false" Conditionals appear in your listings.
If a conditional is suppressed, neither the •IF" statement nor the •ENOIF•

.statement of the "false• block w111 be listed.

Switch -NE __ ., ______ _

Various data declaration pseudo-OPs create a structured format for the
listing of code generated after the first byte of the statement. These are
the 08/0EFB. DM/OEFM. DW/DEFW, and the DC pseudo-OP statements. If you want
to inhibit the expansion from the listing only (the code will still be
expanded for assembly of object code), then specify the No Expansion, ••NE•,
iW1tch,

•

COMMANDS - ASSEMBLE
7 • 6

: ·"""'

\

\

' ;/

Editor Assen>ler COD1111ands

Switch -NH

Object code files usually start off with a header record of x•~s 06 xx
xx x·x xx xx xx'. The x•s would be replaced with the first six characters of
the object code filename {buffered with spaces). EDAS automaticall,y"·generates"· ·-­
this record when writing the object code file. The DOS loader has no problem
with this record. If you would like your object code files to contain this
record, then do absolutely nothing. If you do not want to have this header
record generated, then specify the No Header, "-NH", switch.

Switch -NL _________ .. _

The second phase of the assenbly process generates the assembler
listing. That is the only purpose it serves. If you do not want to see a
listing, then you may enter the No Listing, "-NL", switch. This will
completely suppress phase two and shift the assembler to phase three "(if
object code generation had been specified. If you are interested in listing
statements containing errors, then you must not suppress the second phase.
Note that only the lines containing assembly errors can be listed by
specifying the "*LIST OFF" assembler directive. See the chapter on ASSEMBLER
DIRECTIVES" for further details.

The cross-reference data file is written during phase two. In order to
guarantee that the second phase is available, a cross-reference specification
will automatically override any entry of the "-NL" switch. This could be
useful during a job stream asseni>ly (from Job Control Language) where
selected assemblies need the cross-reference data. Thus, your JCL could
specify "-NL" for every assembly; whenever the XR option was invoked, phase
two wou1d not be suppressed.

Switch -NM

You have read about the powerful uses made of macros in the MACRO
PROCESSOR chapter. By now, you may have realized that the macro model code is
repeated whenever you invoke the macro. Once you become familiar with what
the macro does, you really don't need to see its expansion in your listings
every time the macro 1s invoked. Switch "-NM" has been provided to inhibit
the listing of such expansions. If you specify No Macro expansions, only the
statements invoking the macros will be listed - the listing of the expansions
will be inhibited. In the case of a nested macro invocation, only the highest
level macro call will be listed.

Switch -NO

Previous versions of EDAS, and other assemblers (are there any other?)
have used a switch designated "-NO". Its use was to inhibit the generation of

.object code (No Object) when the assembler automatically generated the object
code. Since EDAS does NOT generate object code unless you tell it to do so

•
C~DS - ASS.E.MBlE.

7 - 7

Editor Assent,1er Commands

(by "filespecl", switch "-WO", or switch "-IM"), the 11-NO" switch "15 ~
unneeded. There are those "~ld dogs" that cannot learn new tricks. Therefqre,);/

. s;w,j tc~ -~.:-:~0 11
1 has. b.een: }nclµ(ied· _just in c'ase -:you have~ the' habit of enterfo'g,

.-,NOo However, it does absolutely NOTHING!

An al tern ate use can be made of the "-NO" switch when operating EDAS
from Job Control Language. This was addressed in the chapter entitled,
RUNNING EDAS.

Switch -SL
.at .. •~------

If you specify "-SL", then any label starting with a dollar sign, •$ 11
,

will be suppressed from the symbol table listing and from any cross-refere9~e
data file. Therefore, use of the "$" as the first character of local labe1s
and specifying "-SL• will result in keeping your symbol table listings
uncluttered with local labels - especially true with the LC coq:,iler.

Switch -WE

In a long assembly. yoLI may want the asse~bler to pause the listing 1f

it detects an assembly error (you I re bound to get some of th.em). The Wait on
Error switch, •-WE", is available for that purpose. If specified, each time
the assembler comes to an error dur·ing phase two, it will pause the listing.
Any character entered from the keyboard will continue the assembly and ~~
listing. If you choose to enter the character "C" or 11 c11

, then the phase two)
process will "c0 ontinue without further interruption• even though additional J/
errors may be detected. The listing may also be paused at any time by
depressing the <PAUSE> key, momentarily. ·

Switch -WO

As noted in a preceding paragraph, object code generation is specified

when "filespecl" is entered. Assembled object code is also generated to disk
if the With Object switch, "•WO" is specified. If "filespecl" has not been
entered, the prompt message:

Obj f 11 es pee?

will be displayed. Enter the object code filespec that you want to use to
save the assembled object code command file at this time. If you do not enter
a file extension, the default 11/CMD" will be assunmed. EOAS will open the
f11e if 1t h M existing f11e and display the message, Replaced, or create
the file if i~ is non-existant and display the message, New f11e.

If you inter •f111spec1•. 1t 1s not necessary to enter the •-wo• switch
as entering the object code fil espec wil 1 activate the "-WO" switch. If the
switch, "-IM", is specified denoting an in-memory assembly, the "•WO• switch
will be ignored.

..

CO~Jll!OS ... ASSF,MBLE
7 ..,, a

"-,

'-

Editor Assembler C011111ands

S~titch -WS

A complete symbol table cross-reference listing is available via the

u-XR·" switch and subsequent processing ·· by the XREF /CMO program. Such a
separate process is needed in order to be able to handle cross referencing of
statements fetched from a *GET or *SEARCH file. An abbreviated printout that
contains only a sorted listing of symbols and their value is available at
assembly time by invoking the With Symbol switch, •-WS". The symbol table
listing would normally be displayed on the video display. If the "-LP" switch
was specified, the listing would be directed to the Line Printer.

Switch -XR
«-•----------.

This is the switch option to use if you want to generate a coq>lete
symbolic cross reference listing. Switch "-XR" will invoke the generation of
a reference data file used by the XREF/CMO utility (see the chapter on CROSS
REFERENCE UTILITY). The reference data file is generated during the listing
pass (phase two). If the XREF filespec is entered with the colillland line, this
switch is assumed to have been entered. If the XREF filespec is not entered
with the conmand line, the filespec of the reference file will be profl1)ted
for with the query,

XREF F11espec?

Respond with the filespec that you want to use to store the reference data.
If you do not enter a file extension, the default •/REF" will be assumed.
EOAS will open the file if it is an existing file and display the message,

Replaced

or create the file if if it is non-existant and display the message,

New file

Error totals

At the conclusion of phase three which generates object code, a listing

of the total nuni>er of errors will appear. This error total will be displayed
after the conclusion of phase two if object code is not generated. If you
need to get a quick idea whether or not your source code contains errors,
place an ""'LIST OFF• pseudo-OP at the beginning of your code and omit any
object code generation - but do not specify "•NL". Only lines containing
errors will be listed. You could also specify switch "-WE" to pause when an
error occurs (Note: If you specify -NL and do not generate object code, the
"Error totals" will be incorrect (the number of forward references plus any
other errors will be displayed)) •

• COMMANDS ... ASSEMBL.E
7 - 9

Editor Asseni>ler Cdiilllands

RANCH
••••••••

The ranch cormiand is used to exit EDAS. Since the ranch cormiand
permits an address as an optional parameter, you can use it to jufl1) to any
address (the entry to an in-memory assembled program, for i_nstance}. The
syntax of <8>ranch is: ·

•••

B {address}

address is the branch address entered in hexadecimal.

•••
This conmand is used to exit the Editor Assembler or optionally branch

to any user designated address. If a branch address is omitted, a return to
the DOS Ready co11111and mode is performed. If a branch address is provided, the
top of the stack will contain a re-entry address to EDAS. This can benefit
the testing of a program assembled into memory. A simple "RET" instruction in
your program wi ·11 return control to EDAS (provided your program maintained
stack integrity and did not crash).

Examples of the ranch corrmand:

----------------~----------------
B

"8 11 by itself wil 1 cause an exit from EOAS and return to DOS.

This conmand will cause an exit from EDAS and branch to your program
at X1 9'1~i• (it- is hoped that your progr~ is there).

B 58~6 (Model I/III) or 8 37~6 (Model II) or B36i6 (LOOS 6.x)

B 3~

This wi 11 invoke a jufll) to the wanner-start vector which
re-1nit1alizes EOAS and clears the text buffer.

This branch will cause EOAS to enter DEBUG (Model I/III or LOOS 6.x
only). The Program Counter as displayed by DEBUG can be used as the
return address to EDAS. Optionally, you can •Go• to X'58'13' (Model
I/III) or X'36~3' (LOOS 6.x) or X'37~3' (Model II).

COV!i"u\HDS - BRAnCH
7 • 1'1

-
J

., ,,'.

)

v'
j

Editor Assembler C011111ands

\ <C>HANGE

"" - I

.... ,. ...
The <C>hange comand performs a globa) modification ~f a string of

characters. Its syntax is:

••••••••••••••••••••••••••••••••••=••••••a••••••••a••a•••••••••
I I
I C /stringl/string2{/nl,n2} I
J I
I stringl 1s the current string to change. I
I I
I str1ng2 1s the replacement string for stringl. p
I I
I nl is the line number of the line preceding the I
I first change (FIND always starts at line+l). I
I I
I n2 is the line number of the last line to change. I
I I
I I represents a string separator character. It I
I can be any character except a digit <S-9>. I
I I
•••

A string of characters can be changed throughout the text buffer by this
one easy co~and. The global <C>hange co11111and will change the appearances of
•stringl• to the sequence •string2•. Because <C>hange uses the <F>ind co11111and
to locate strings and the <F>ind comnand always starts searching at •current
line+ 1•, no changes can be performed on the first line of the text buffer -
at least not with the <C>hange conrnand. Also, only the first appearance of
"stringl• in each line that •stringl 11 appears will be altered.

The first non-blank character foll owing the °C 11 becomes the string
delimite1r (the slash character is shown above; any character except a digit
<0-9> is permitted). Null strings are not permitted (i.e. the string 111.1st
contain at least one character).

There is no requirement for "string2" to be the same length as
•stringl 0

• It can be of lesser, equal, or greater length; however, no string
can exceed 16 characters in length. If a change would result in a line
exceeding the maximum line length (which is 128), the change will not be
performed on that line and the message,

Field overflow

will be issued. The search for 0 stringl" continues for the remaining lines.

A line which contains "stringl" will be displayed as it exists both
before and after the change. The <SHIFT-@> key may be used to pause the
display. If you depress the <BREAK> key, it will stop further changing.

~·• COMMAHDS - CHANGE
7 - 11

Editor Assembler Coa11uds

The entry of "nl 11 and .. n2 11 is optional. If .. nl• is entered, then 11 n2 11

must be entered. If neither 11 nl 11 nor "n2" is entered, then 11 nl 11 is assumed to
be the beginning of the text buffer (# or t) and "n2" is assumed to be the

. end of the text buffer (* or b). Either "nl II or 11 n2" can be entered as the
current line indicator(.). You can enter "nl" as (# or t) to indicate the
beginning or top of the text buffer while "n2" can be entered as (*orb) to
indicate the bottom of the text buffer. One additional restriction is that if
you enter. "n2" as "b 14 or"*"• then no change will be made on the last line of
the text.

When EDAS is set to the •lower-case converted" mode (see the information
concerning the •<S>wftch-case11 command), both "stringl 11 and 11 string2" will be
converted to upper case characters prior to the search and replacement. If
you need to change lower case characters as well, then you must switch EDAS
to the "lower-case permitted" mode prior to issuing the <C>hange command. "v

The •tab" character is a perfectly acceptable character to be used
within 11stringl" or 11 str1ng2". This may be useful if you want to convert a
contiguous sequence of spaces to a single tab.

Examples of the <C>hange convnand:
--------~-------------------~----
C /MODIFY/ALTER/

This conrnand will change all appearances of the string 11r«>DIFY 11 to
the string •ALTER•.

C .DEFB.DB.9'11,liSI

This command will change all appearances of •OEFB• to •os• from line
l~S to line li~S (assuming inc•l~).

C /DEFM/DB/9QJ,b

This <C>hange command will translate all appearances of "OEFM• to
11 08" from line l~j to the end of the text (assuming 1nc•li).

.
A

COMMANDS• CHANGE
7 - 12

-
/

\

, ..

Editor Assemler Comands

<C>OPY
••••••••

The <C>opy command can be used to duplicate a line or block of lines
from 9ne point in the text buffer into another point in the text buffer. Its
syntax is:

•••

C linel,line2,line3

11nel

11neZ

11ne3

is the first line of the block to duplicate.

is the last line of the block to duplica~e.

is the line number of the line that the copied
block should follow.

··•=•••=••·········
This conmand is useful to duplicate a line or block of lines. Note that

the c011111and letter is the same as the <C>hange co11111and. EDAS will interpret
the <C> as a <C>opy co11111and if the first non-blank character following the
<C> is a digit <0-9>. At the conclusion of the <C>opy operation, the entire
text will be renuni>ered using the increment currently in effect. A few
restr·!ctions. are in order. A <C>opy cannot be performed if 11 line311 is
interior to the block 11 linel 11-•line2•. 11Linel 11 IIIJSt either precede 11 11ne211 or
be equal to 11 1ine211 (where 11 linel 11 is equal to 11 line211

, the block to be
duplicated consists of the single line, 11 linel11

).

If insufficient space is remaining in the text buffer to duplicate the
entire block, none of the block of lines will .. be copied and the message,

Text buffer full

will be displayed. The parameters (line nuni>ers) 111Jst specify specific lines
in the text buffer. If any of the line nuni>ers cannot be found, the copy will
not be per•f ormed and the message,

No such line

will be displayed. The <C>opy co11111and requires all three parameters entered
and separated with the c011111a (,). If this syntax is not met, the message,

Bid parmeters

will be displayed.

COMMANDS - COPY
7 - 1.l.'3

Editor Asseat»ler C011111nds.

Examples of the <C>opy comand:

--~---------------------~------

This comand will duplicate the block of lines nuni>ered from li~ to
zg~ inclusive to also appear after 11ne nuni>er 1~00.

C t,5'J,5'J

This comand will copy the block of lines from the top of the text
through line nuni>er 5~ so that it will also follow line nuni>er S{IJ.

C 58!i 11 7(i{IJ I t1
,,.-w

This <C>opy comand will duplicate the block of lines nuni>ered from
58{/J to 7{1Ji so that they also appear after the current bottom of text.

•

COMMANDS .. COPY
7 • 14

j

/

J

,_J

\
I
'

Editor Assembler C0111ands

<o>am
••••••••

The <D>elete co11111and is used to remove a line or block of lines from the
text.buffer. Its syntax is:

···~·-·····
D {linel{,lfne2}}

linel

line2

1s the first line to delete.

1s the last 11ne to delete.

•••

This corrmand is used to delete the line or lines specified from the
source text buffer. The characters •in or •tn are used to indicate the
beginning of the text buffer when used for "linel0

• The characters ••0 or •b•
are used to indicate the bottom of the text buffer when used for "line2•. If
the line parameters are omitted, the current line, •.• is assunmed.

To aid in you 1n observing what becomes the new current line after a
line delete operation, the new current line will be displayed.

Examples of 11ne deletes:

-----------~-------------

This <D>elete will remove from the text buffer, lines 100 through 5110
(inclusive).

D T.B or d t,b or d #,*

This comand w111 remove the entire source text from the text buffer.
A ranch to the •warmer• start address also will delete the entire
text.

D or d

D 1{15

Th1s <O>elete comand will remove the curr.ent source text line. A
period, •.•, may also be used to indicate the current line (i.e.
•o.•>.

This comand w111 delete the the single line nunt>ered 105 •

• COMIWIDS - oaETE
7 - 1,5

Editor Assembler COIIIIIUldS

<E>DIT
••••••

The <E>dit conmand is used to invoke the line editor for purposes of
making alterations to a single text line. Its syntax is:

·-·~·-···
E {11ne}

line is the nulli>er of the line to edit.

••••••••1111•••••••••••1111aa11i111111••••••••••••• .. •••••••••••••••••••••• . . .
.,..1

This co11111and permits the user to edit or modify any source text line.
The syntax and function of all edit subconmands are identical to those
111l)lemented in the BASIC editor. If the optional line nuni>er is not entered,
the current line, •••• will be edited.

When using the 11ne editor, it w111 always operate 1n the "lower-case
permitted• mode. Therefore, you will need to pay attention to use of the
<SHIFT> key when editing upper-case characters. However, once you co~lete
your editing and exit the line editor, your line-will be properly converted
to upper-case as required if EDAS is 1n the "lower-case converted• mode.

co~os - EDIT
7 - 16

\

-~

Editor Assembler C011111111ds

The following table of Edit Subco11111ands are provided for a reminder of
the co111110n edit operations:

··~---·············
A

nC

nO

E

H

I

nK.x

L

Q

nSx

<-

ENTER

ESCAPE

SPACE

Abort and restart the line edit.

Change n characters.

Delete n characters.

End editing and enter the changes.

Delete (hack) the remainder of the line and
insert the following string. A line hacked to

·· zero length will be automatically deleted when
exiting the line editor.

Insert string.

Kill all characters up to the nth occurrence
of x.

Print the rest of the line and go back to the
starting position of the line.

Quit and ignore all editing.

Search for the nth occurrence of x.

Move edit pointer back one space.

Enter the line in its presently edited form
and exit the edit mode.

Escape from any edit mode subconrnand. The
<SHIFT-UP-ARROW> key is the escape key on
the Model I and Model III.

Display the next character of _the current
line be~ng edited.

··································~····························

~,-EDIT
7 H •17

Editor Asselllbler Coaaands

<F>IND

The <F>ind conmand is used to locate the next occurrence of a string of
characters within a line. Its syntax is:

F {string}

string is the character sequence to find •

•••
The text buffer 1s searched starting at the current 11 11ne+l" for {tie

first occurrence of "string". "String" can be from <l to 16> characters 1n
length. If more than 16 are entered, then any characters beyond the 16th will
be ignored. If no string is specified, the search is the same as that of the
last <F>ind co11111and 1n which a string was specified (provided a global
<C>hange command was not performed after the last <F>ind command). If the
search string 1s found. the line containing it is displayed and the current
line pointere •. 11

, is updated to point to the cMsphyed 11neG If the string
1s not found, ·the message,

String not found

1s displayed and the current line pointer, •·•• remains unchanged. A •Pf" or
111 Pt11 command can be used to position the 11.ne pointer to the t~p of the text
buffer prior to use of the <F>ind command. Spaces and tabs are considered to
be part of •s~ring• and are thus acceptable for "finding•.

Examples of the <F>1nd command:

------------~-----------~------
FWRITEWORD

F

This <F>ind command wi 11 locate the next appearance of the string
"WRITEWORO".

Assuming a <C>hange co11111and has not been performed, this conmand will
find the next appearance of "WRITEWORO".

COMMANDS - FIND
7 ... 18

-
f

--..

\
I

Editor Assembler Coamands

<H>ARDCOPY
••••••••••

This comand lists a line or block of lines on a line printer to provide
a "hard copy•. Its syntax is:

•••
I

H {linel{, 11ne2}} I
11nel

11ne.2

is the line nuni>er of the first line to print. I

is the line nuni>er of the last line to print. },
I

•••

This comand will print a line or a group of lines to a line printer.
EDAS will print 56 lines to a page (see the discussion of the <l> comand)~
If a properly paged display is desired, it is suggested that you set your
paper to begin printing at the sixth line from the top of the page.

Examples of the <H>ardcopy comand:

------~----------------------------
HI,* or H t,b

H.

H

This co11111and will print the entire text buffer.

This comand will print lines nuntlered 1(1(1 through srara inclusive.

This co11111and will print the single line pointed to by the current
line pointer, •.•.

This c011111and will print the 15 lines (Model II and LOOS 6.x print 23
lines) starting with the current line.

COMMANDS - HARDCOPY
7 - 19

Editor Asseli>ler Coauads ·~

<I>NSERT
••••••••

This command is used to invoke the <I>nsert mode so lines can be input
into the text buffer. <I>nsert is somewhat similar to the "AUTO" convnand in
BASIC. <I>nsert's syntax is: ···-~ .. ···· .. .

I {1 i ne#{. inc}}

11nel

1nc

is the number of the line that the insert
should follow.

changes the current increment to "inc".

Note: use <BREAK> or <SHIFT-CLEAR> to exit

........................ ~·············
The Insert command is used to insert or add text lines into the text

buffer. All lines of source text are entered with the use of the <I>nsert
comTiand. After using the <I>nsert conmand to specify where you wish to place
new lines, the editor will generate the designated line number and allow the
inserting of that numbered text line. After entering the first text line the
editor will generate the next line number higher, as specif.ied by your
increment selection. Incremental line nuni>ers will continue to be generated
as long as there is room between lines or room left in the text buffer.

If a desi,red increment is not specified, the 1ast specified increment is
assumed. Period, •.~, may be used for "linel" to indicate the current line
or if •11nel" is omitted, the current line will be assumed.

The <BREAK> key will allow you to leave the insert mode at any time. The
<CLEAR> key also performs a functional BREAK. If you have entered the <BREAK>
before depressing <ENTER> to cofll)lete the input of a line, that line will not
get entered into the text buffer.

Ex~les of the <I>nsert command:

-~--~----~--------~--------------

IB

This comnand will begin the text insertion to follow line numbered
3~1 and also change the increment to 5.

This conmand will append new text to the end of the text buffer. It
is identical to performing a •Pb" followed by an "l".

COMMANDS - INSERT
7 - 2i

\

/

·-
/

Editor Assembler Coaaands

'\ <K>ILL
l

'-··

••••••
This conmand can be used to erase a file from a disk. It will function

identically to the DOS KILL (or REMOVE) command. Its synt~x is:

•••

K fi lespec

f11espec 1s the filespec of the file to be erased.

Note:. The file extension currently in effect for NsourceN
files wi 11 be used as ~i default extension.

I

I
I
I
I -"'v
I
I

•••

This command is used to delete a file that 1s not needed. Coupled with
use of the QUERY corrmand, file maintenance can be implemented·from within the·
Editor Assembler environment. This is especially useful when a <W>rite
conmand results in a ttOISK FULL** DOS error and you have to find a diskette
with sufficient free space.

In order to guard against 1nadvertant use of the <K>111 command, a
f11espec must be entered. If no extension is entered, the extension currently
1n effect for source files (usually NASM• unless over-ridden by LC or EXT•
parameters) will be assumed. If you enter the <K>ill command without a
f11espec, the message:

Bid parameter-Cs)

will be displayed.

Note: The <K>ill conmand is not available on Model II versions of EDAS.
Therefore 0 one must use the <Q>uery KILL DOS comand on the Model II.

Examp 1 es <>f the <K> i 11 commillnd:

--~--------~----------~--------
K OLDPROG/ ASM :2

This con111and wil 1 erase the file, 0LDPR0G/ASM, from drive 2.

K TEST:(I

This <K>ill conmand will erase "TEST/ASMN from drive B.

• COMMANDS .. KILL
7 - 21

Editor Assembler Commands

<L>OAD
This command is used to load a source file into the text buffer. Its

syntax is:

•••

. L {f11 espec}

f11espec is the filesp,ec of the file to be loaded.

•••
,,.,.""i

The <L>oad command will read the file denoted by the "filespec" into the
text buffer. The text file will be concatenated to any text already in the
text buffer. The file specification 1s composed of a FILENAME, optional
EXTens1on, optional PASSWORD, and optional DRIVE reference as in:

fILENAME/EXT.PASSWORD:D

If you do not enter the "f11espec", EDAS will prompt you for the
f11espec. If you omit the file extension (EXT), a default extension of "ASM"
will be used thus saving keyboard input and at the same time providing for a
st,andard f1 le naming convention. If the "LC" parameter was spec_if1ed in the
ED>\S c01111Taand line. then •ccc• will be used for the default. The EDAS
parameter 0 EXT•ext• can be used to override the assigned default extension to
th4t of •ext• (see the chapter on RUNNING EDAS).

The <L>ocid coma.nd wi 11 cWtwnatkal ly handle a source file that is
line-nuntlered and headered (EDAS Version III format), line-nuni>ered and
un•headered (EDTASM Series I format). or un-nuni:>ered and un-headered (EOAS
ft:H''ffiati text (atilHciif• pirepi:lred fl fot, cw' c1;;rtain M-S@ files)~ Mlx!el XI so1Jr·ce
files created with EOAS 4.9' must be converted using the CONV4~ utility. If'
the file being read is not 11ne-nurrbered, EDAS will automatically nunber it
as it loads. A line nuni>er counter 1s kept internally that advances by the
current increment for each un-numbered line read. Thus, concatenation of
source text via n~ltiple loads of un-nuni>ered source files will produce a
sequentially numbered in-memory text. The line number counter is reset to its
initial starting value only by a warm-start or depression of the <CLEAR>
command function.

A line-nunbered file is interpreted as one in which the first five
characters of a line have the high-order bit (bit 7) set. The 5-character
11ne nunt>er is also followed by a terminating character (usually a space but
could be a tab with bit .7 set). A headered file is interpreted as one in
which the first character of the file is an X'D3'.

•ASCII• files prepared by a word processor program (i.e. SCRIPSIT) are
loadable by EDAS; however, they must be pure ASCII and must have line lengths
not exceeding 128. The only requirement is that there must be an end-of-file
character as the last character of the text (which would follow a carriage

CO~DS .. LOAD
7 - 22

J-'

j_,,,,

:\

' ·-

Editor Assembler C0111111ds

return). The end-of-character can be either an X1 lA 1 or a null, X1i0 1
• EDAS

can only convert lower case to upper case during <I>nput or <E>diting so if
you use an external word processor program, keep the Z-80 code in upper case.

Exafl\) 1 es of <L>oad conmands:

L IIO'J)rog

' This conraand will search for a file named •MYPROG/ASM• (assuming a
default extension of •ASM•) and load it into the text buffer.

L theprog:l

Dt,b

This conmand will load the file named •THEPROG/ASM• from drive 1 into
the text buffer.

L newprog:2

This sequence of conmands will first clear the text buffer then load
the file named HNEWPROG/ASM• from drive 2.

COMMANDS - LOAD
7 ... 23

Editor Assemler Comands --

<M>OVE
••••••

This comand is used to <M>ove a line or block of lines from one text
buffer location to another. Its syntax is:

... ~---·
I

M linel, 11 ne2, 11ne3 I
I

11nel 1s the line nunt>er of the first line to move. I
I

11ne2 • 1s the line number of the las.t line to move. I •
I

1ine3 is the nurmer of the line that the block I -"v
should follow after the Ol)Ve. I

I
••• ' . '

This comand is used to move a block of lines from one location in the
text buffer to another. A large quantity of text lines can be moved to a
different position in one easy operation. In the command syntax, "11nel" and
"line2° are the beginning and ending line numbers of the text block to be
moved. "Linel" and •1ine2" are permitted to reference the same line number if
only one line 1s to be moved. •LineJ• is the line number of the line that the
text block will follow after the move. The line number references 1111st be
offset by comas•,•. Your line nurmer parameters must specify existing lines
in the text buffer. If any of the entered line numbers are non-existant, the
message,

No such· line

will be d1spla,ed.

"L1ne3• is not permitted to equal •linel" or •1ine2• as that would
represent an illogical move operation. "L1ne3" is not permitted to be a line
interior to the range "linel" through •11ne2• as that would also be an
illogical operation. The message,.

Bid pu-111eter(s)

w111 be issued if your input violates any of these conditions.

The block of text to be moved is stored ten.,orarily in the spare text
region. If this region is not large enough to store the block, the message,

Text buffer full

will be issued. Try moving the block in smaller segments.

Upon co01) ·1etion of the move, all . 1 ines 1n the text buffer wil 1 be
renumbered starting from l~; and incremented according to the line increment

,,.

COMMANDS - MO"E ~ . .Y
7 - 24

•

)

Editor Assembler Comuds

currently in effect. Renunilering is absolutely essential to perform proper
operation of Editor Assembler convnands and so it is done automatically.

Exaq,les of <M>ove conmands:

-----~----------------------
M S~j,~~ 1 151~

You desire to move the block of text starting at line 5i0 and ending
at line 9'tli to follow line 151~. This conmand will perform the
desired operation •

• COMMANDS - MOVE
7 - 25

Editor Assembler ColllUldS

RE<H>UMBER
••••••••••

This conmand is used to re<N>urmer the lines of text in the text buffer.
I ts syntax 1s:

•••

N {line{. inc}}

line 1s the new first line nuni>er.

1nc is the new increment •

•••
The <N> comnand 1s used to renurrber the lines 1n the text buffer. The

first line in the buffer is assigned the nurrber specified as •line". If
•11ne" is not specified, it defaults to ~Sl~~. The remaining lines 1n the
buffer are renurrbered according to the increment •inc• or the previous
increment in a re<N>urmer, <R>eplace, or <I>nsert conmand if the increment
was not spec1f1ed. The current line pointer, e.~. points to the same line as
1t did before the re<N>ulli>er command was-used, but the actual nulli>er of this
line may be changed.

Examples of 11ne re<N>urmer1ng:

·······---------~--------------
N

NS

Nlil,5

This command w111 renurmer the text to start with 11ne nuni>er l~i.
The prmfi ous focr~ra.eo1t in ~'f f ect ~111 be m,;f:/IL

This re<N>urmer comand will renulli>er the text to start with line
nuni>er 5. It also uses the previous increment.

This c011111and will renuni:>er the text to start with line nuni:>er 1~. It
changes the line increment to a value of 5.

c~~~DS RENUr.tER
·c' 1 ·•: 26 ,.,,,•:;;;,

-

---~
\

Editor Assembler Coaands

<P>RINT
•••••••

The <P>rint command is used to display a line or block of lines to the
video display. Its syntax is:

•••

P {11nel{, line2}}

11nel 1s the nunt>er of the first 11ne to display.

11neZ is the nunt>er of the last 11ne to display.

I
I
I
I
I
h
I

•••
The <P>rint conmand will display a line or a group of lines on the

monitor screen. The current line pointer, "·"• is updated to point to the
last line displayed.

If "linel" is entered without entering "line2", then only "linel" will
be displayed. If neither 11 linel" nor 11 1ine211 are entered, then the current
line plus 14 additional lines (total of 15) will be displayed (23 total lines
will be displayed on the Model II).

Exan.,les of ~P>rinting lines:

·----------------------------
P #, * or p __ t,b

•
This conmand will display all lines in the text buffer. You may use
the <PAUSE> function to tefll)orarily halt the display from scrolling.

P lit1,~fl

p •

p

This comnand displays lines l~~ through 500 inclusive.

This conmand will display the the line pointed to by the current line
pointer. Only a single line will be displayed.

This conmand displays 15 lines (23 on the Model II) starting with the
current line. The <P>rint conmand operates in a screen scroll mode.

.. COMMANDS - PRINT
7 - 27

Editor Assemler C01111ands ·

<Q>UERY
•••••••

On the Model I or III, this command can be used to obtain a directory of
files stored on a disk. Under LOOS 6.x or on the Model II, <Q>uery is used to
execute a DOS corrmand. Its syntax is:

Q{d{/ext}}

d

/ext

Model I/III

is the drive (0-7) for which a directory
display is desired.

I
I
I

I
I

is an optional •part-spec" file extension used \
to display only files matching the "ext".

I
---------------------·----~-----------~------------------------LOOS 6.x or Model II I

Q DOS-c011111and I

OOS•cOllumcmd can be any DOS comucnd except COPY or BACKUP I
I

.............. u••••••••• .. ••••••••• ••••••••••••••••••••• .. •• ••••••

With Model I or III, this comand is used to display a d·irectory from
the designated drive. If a drive number is not entered, drive i will be
assumned. The •part-spec• optional entry can be useful to . isolate the

'
··"

directory display to select only those files matching a particular class. For .,
example, if you only want to display the names of "/ASM• files, the part-spec
extension should be used. •

Under LOOS 6.x or on the Model II, <Q>uery is used to interface with
the DOS while in the evironment of the Editor Assembler. Any DOS comand can
be accesse~. It is recommended that you not attempt to access the •copy• or
"BACKUP" commands due to the possibility of overwriting the Editor Assembler.

IMPORTANT: NEVER DEPRESS <BREAK> ON THE MODEL II DURING A DOS
COMMAND EXECUTION. TO BREAK ANY DOS COMMAND, USE THE <ESCAPE> KEY.

Examples of <Q>uery conmands:

--·---~---------~------------
Q DIR

Ql/CCC

This LOOS 6.x or Model II <Q>uery conmand will 11st the diskette
directory to the display device.

This Model I or Model III <Q>uery command will display the names of
all LC source files stored on drive 1.

•

CO.~~~DS QUERY
7 - 28

;...,

,/

Editor Assed>ler Co•ands

<R>EPLACE
•••••••••

This co1t111and can be used to replace a specifi~d text line and
automatically enter <I>nsert mode. Its syntax is:

•••

R {line{, inc}}

11ne is the nunt,er of the line to rep1ace.

inc is the new increment to be used •

•••
The <R>eplace co1t111and only replaces the one line specified and then

enters <I>nsert mode. If 11 line11 is omitted, then the current line is assulll!d.
If "line" exists, it is deleted and then <I>nsert mode is entered starting
with that line nuntler. If "line" doesn't exist, <I>nsert mode is entered just
as if the <I>nsert co1t111and were invoked. If "inc" is not specified, the last
increment specified by an <I>nsert, <R>eplace, or re<N>untJer co1t111and is used.
The current line pointer, •.•, is always updated to the new current line.

If durin_g subsequent INPUT of lines, the error message:

No 110re ro011

is issued, 1t means that a line nunt>ered •current• + •inc" already exists. It
is suggested that you renunt>er the lines and continue your insertion after
ascertaining the new line nunt,er assigned to the "current" line.

Examples of <R>eplace conmands:

R

R 1{1{1,1~

R 10'11

This conmand will replace the current line.

This <R>eplace conm~d will start replacing lines beginning at line
nuni:>ered l~{I and enter <I>nsert mode with an increment of li.

This cormiand win start replacing at line null'bered 100 using the last
specified increment.

C0MMANOS •· i£l?t.../Aa.
7 ,,,, 'Z.~

Editor Asseamler Co•and~.-

<S>WITCH CASE CONVERSION MODE
•••••••••••••••••••••••••••••

This command is used to toggle the 11 case conversion mode" of EDAS. It
will either permit the acceptance of both upper case and lower case, or
invoke the automatic conversion of lower case to upper case where required.
I ts syntax is:

•••

s
There are no parameters or options •

•••

Conmand <S>w1tch will toggle the switch-case conversion of lower case to
upper case. If your computer supports the display of lower case, this feature
wi 11 be of great benefit. Two modes are av ail ab le:

1. Lower case accepted: This mode permits entry of either lower case or
upper case. Your input is preserved in whatever case it is entered. EDAS is
suitable as a text editor in this mode. This is the mode used when entering
LC C-language source text.

2. Lower case converted: This mode permits entry in either ·upper case or
lower caseo All lines are converted to·upper case during <I>nput mode or when
exiting the <E>dit mode. This mode should be used to input assembler source
text. While in the lower case converted mode, the fol lowfog conversion
behavior is exhibited:

Character strings within single quotes are kept in lower case if
entered in lower case. This will ,nsure that your string declarations
are kept intact.

•
Characters entered following a semi-colon are kept in lower case if
entered in lower case. This permits the entry of co11111ents in lower
case which makes your source text Illich more 11 readab le0

•

On entry to EDAS, the 111 lower case converted• mode is activated. Each
entry of an •s• conmand will switch (toggle) the case mode and an appropriate
message will be displayed.

Lo•r cue pena1tted - for full lower case
Lower cue converted - for upper case conversion

Since the <I>nsert corrmand mode converts to upper case, the <F>ind and
<C>hange convnands utilize the <I>nsert input and will also convert to upper
case. You can <F> or <C> lower case by using the case switch toggled to
•lower case permitted".

COMMANDS• SWITCH CASE
1 - 3g;

-.....,_

-----)_.,,

)

y

.

Editor Assembler Coaands

~
i <T>YPE

••••••
This conmand can be used to print a line or block of lines on a line

printer. In contrast to the <H>ard copy command, <T>yPe will omit the line
nuni>ers. Its syntax is:

•••

T {linel(,1ine2}}

11nel

11ne2

is the nuni>er of the first line to print.

1s the nuni>er of the last 11ne to print.

I
I
I
I
l,.."v
I
I

•••
The <T>ype corrmand prints a line or block of lines onto the Line

Printer. The current line pointer, N.M, is updated to point to the last line
printed. This conmand is much like the <H>ard copy command, except line
nuni>ers are not printed. Only the source text is printed. If a properly paged
display is desired, it is suggested that you set your paper to begin printing
at the sixth line from the top of the page (for additional information on
paging, see the <l> conmand).

~ Exaq:,les of ~T>ype co11111ands:

,,

For exaq> 1 es . of the <T> ype c011111and, see the <H> ard copy c011111and. The two
conrnands function identically except that <T>ype omits the line nuni:>ers
during the printing.

COMMANDS - TYPE
7 - 31

Editor Assembler C01111uads"'

MEMORY <U>SA&E
••••••••••••••

This command is used to display certain statistics concerning the memory
usage of your source text buffer. Its syntax is:

----~···~,-··············
u
There are no parameters or options.

r~
This coirimand wil 1 disp 1 ay the nunber of bytes of text buffer in use, the~

number of bytes spare and the first address available for assembly to memory
(note that 1f macros are being used, the macro storage area extends from the
address shown as the first a,ddress av ail ab le for assembly and you w111 have
to experimentally choose a higher address for an "in-memory" assembly).

This command is useful to ascertain requirements for storing the text
buffer to disk. Note that a disk f11e, which is written in ASCII
(un-nuni>ered), will contain two (2) bytes less per text line. The 2 bytes
represent the line number used in the storage format of text in memory versus
text in an un~numbered ASCII file.

It also 1s useful when assembling into memory. Since the Assembler will
not permit you to overwrite it or the text buffer, you will have to •ORG"
your program in the free text buffer area. The first available address is
output by this conmand (remember the note on macro storage).

An exaJq:>le of <U>sage output is:

3~622 bytes spare
0~000 bytes in use
8863H ·1 s the first free address·· ,, ',". l,.; , .. ,•

co~~.J.!DS USAGE
7 .. 32

: i ,; ' ;· ••

J

r

\

Editor Assemler C0•111ds

<V>IEW
••••••

This command is used to list (display) a file on the video display
device. Its syntax is:

··•·=••········ I
V {filespec} I

I
f11espec is the filespec of the file to be displayed. I

'~ •••

This conmand can be used to display any file without actually loading
the file into the text buffer. No atteq,t is made to convert non-ASCII
characters prior to displaying. Therefore, 1f the file 1s not an ASCII file,
strange characters may be displayed. Use the <V>iew command primarily to•
display source files.

The output may be te111>orarily stopped by depressing the <PAUSE> key or
may be interrupted and cancelled by depressing the <BREAK> key.

If you do not enter the f1lespec w1th the comand line, 1t will be
proq,ted for with the query:

f11espec?

If you-·do not enter a f1 le extension with the file specification, a
default extension of •ASM• will be used unless the •Le• parameter was
specified when entering EDAS. •Le• redefines the default specification to
•ccc•. Note that the default extension could also have been changed via the
•EXT•ext• parameter.

• COMMANDS - VIEW
7'" 33

Ed 1 tor Asss 1 er Co111111a.nd's .,

<W>RITE
The <W>ritt! cr.lirmand is used to save the contents of the text buffer into

a disk file. Its syntax is:

... ~·····
W{+}{#}{$}{!hh} {filespec}

f11espec

+

is the filespec to be written.

1s an optional switch to write a source file
created with a header record.

f 1s an optional switch to write a source file
with line numbers.

$ 1s an optional switch to write a source file
with line numbers terminated by X'89'.

lhh 1s an optional switch to specify a end-of-file
terminating byte of X'hh' other than X1lA 1

•

Use 0 11° to suppress the E-0-F byte •

•••
T'his comand w111 wr1te the text buffer to the ' fHe denoted by f11espec.

If no f11espec 1s entered, you w111 be proq,ted for 1t 1n a manner identical
to the <L>oad conmand. If you omit the file extension (EXT), a default
extension of •ASM• will be used thus savin9 keyboard input and at the same
time providing for a standard file naming convention. Remember, if you had
specified 0 LC" or •EXT•ext" when you entered EDAS, the default source
extension will be "CCC" or •ext• respectively.

The switches are used for compatibility in writing source files for use
with other editors such as the M-8~ editor, EDITS~. earlier versions of EDAS
(3.4 and 3.5), and EDTASM. If ioore than one switch is used, the order is
irrelevant. Use of the switch •+• · wi 11 enable creating a file with a file
heider record (X'D3' followed by a 6-character filename).

If the source f1le is to contain line numbers, then the •1• switch
should be used. This will write line numbers as five ASCII digits with the
high order bit (bit-7) set. The line number 1s terminated with a space
character (X'2~'). The switch"$• generates a line numbered file the same as
the •1• switch; however, the terminating character is written as a tab with
bit•7 set (X'89'). Some versions of FORTRAN require the source file to be in
this manner; thus, EDAS could be used to prepare source files for FORTRAN.

Finally, the •!hh 0 switch can be used to specify an end-of-file byte to
be other than the standard X1 lA 1 normally used by EDAS. For instance,
specifying "!~0" will change the E-0-F byte to x•a0•, the value used by

COMMANDS - WRITE
7 .. 34

/

Editor Assembler Co11111a11ds

~ SCRIPSIT. If instead of the two-character hexadecimal value, you enter a
second exclamation point as in •!!", then no E-0-F byte will be written.
Observe caution as EDAS can only properly load a file if the E-0-F byte is an
X'lA' or an x•~e•.

"'· .. \

'If the file denoted by "filespec" is non-existant, a file will be
created and the message,

New Ftle

will be issued. If the file denoted by •filespec• is an existing file, it
will be replaced by the write operation and the message,

Replaced

will be issued. YOU WILL NOT BE GIVEN AN.OPPORTUNITY TO CANCEL A hRITE
REQUEST ON AN EXISTING FILE. Know what you are doing.

Exafll)les of <W>rite comnands:

W parmd1rl:3

This conmand will write the current contents of the text buffer to
the file, PARMDIRl/ASM:3

W !~S doparm/jcl:I

This·· <-W>r1te c011111and will save the text buffer in the file,
OOPARM/JCL:0. An E-0-F byte of X'~0• would be used instead of X1 lA 1

•

Thus, EDAS was used to edit a Job Control Language file.

•
" COMMAIUlS - WRITE

1 - "35

Ed 1 tor Assem 1 er Comands -,

E<X>TEND
111111111111u11a1aa1

This command can be used to increase the area of the text buffer by
eliminating the assembler. Its syntax is:

X

There are no parameters or options.

··••111••············
This command can be 1Jsed to extend the text buff er area by mov 1 ng tMf•

text over the Assembler portion of EDAS in memory. Approximately 800QJ bytes
are gained by this extend operation. It is ijSeful 1f you are editing a large
body of text or are dealing with a large assembly language source program.
Since the capability of direct assembly from disk files is a function of the
EDAS Editor Assembler, editing can be performed without the Assembler module
of the program in memory. You, of course, will have to exit and reload the
Editor Assembler for further Msembling.

Another reason for the use of e<X>tend, is to handle those EDAS 3.5
files that now exceed the maximum text buffer size of EDAS version IV. It 1s
suggested that you keep your source files 1n smaller modules. The -GET
capability provides great power 1n handling multiple source files 1n an
assembly stream. You will thus find that a program made up of smaller modules
of code is perhaps easier to maintain and just as fast to assemble.

Following the entrr of the <X> command, the proffilt:

Are you sure?

will .be displayed. This is provided as a safeguard in case y~u inadvertantly
enter the <X> command. You must respond <Y> in order to.co~lete the
extension. Entry of any other character will abort the extend operation. A
response to the query with a <Y> will move the current contents of the text
buffer and reset all po-inters to their proper value. Once the e<X>tend
command 1s invoked, both · 1t and the <A>ssemble command will ''be made
. inoperat 1 ve.

COMMANDS - EXTEND
7 .. 36

\

'--

'

Editor Assembler COIIIDUldS

<l> (ONE)
•••••••••

This corrmand can be used to display or alter the current page formatting
parameters of EDAS. It is not supported under LOOS 6.x,or Model II (use Q
FORMS). Its syntax is:

•••
I
I
I
I
I

~

l{nl{,n2}}

nl

~

is the nuni>er of lines to print per page.

is the page length in lines.

~··
This corrmand can be used to alter the two paging parameters used by

EDAS. One of these parameters specifies how many lines to print on a page
before issuing a form feed. The other parameter is specified in the printer
Device Control Block (DCB) and represents the maximum printing lines on a
page. EDAS initializes with "nl• set to 56 (57 on a Model III since a Model
III starts counting from 1). Thus, 56 lines will be printed before sending a
page eject. The value of the page length stored in the "'PR DCB (X'4~28' Model
I and III) is used for the •nZ" value. Either value can be changed with this
COIIIUand. If no parameter is entered, then the current values will be
displayed. .

Examples of the <l> conwand:

··········~-----------------
1 46 51

l

This co11111and will set the maximum page . length to 51. The nuni>er of
printed lines until a form feed is generated will be set to 46.

This co11111and will display the current values for lines-to-print and
lines-per-page. The display will look like:

~0~56 ~~~66
~~~57 ~G~67 

• 

(Model I and Model II) 
(Model III) 

COMMANDS - ONE 
7 - 37 



Editor Assembler Commands 

MESSAGE TO JOB LOG•.• 
•••••••••••••••••••••• 

The dot 11
•

11 command can only be used with LOOS, to post a time-stamped 
message to an active job log. There will be no visual indication of the 
event. Its primary utility will be with Job Control applications of EDAS. An 
example of a message post would be: 

• Starting assembly of PARMOIR 

SCROLL UP <UP-ARROW> 
•••••••••••••••••••• 

The "SCROLL UP" command displays the line preceding the current line ana 
updates the current line pointer, 11

•
0

, to point to the line displayed. If the 
current line is the first line in the text buffer, it is displayed and period 
11

•
111 remains unchanged. "SCROLL UP" is an immediate command and llltst be the 

first character of a command line in order to be interpreted. 

SCR.OLL DOWN <DOWN-ARROW> 

·········~·············· 

.I 

The "SCROLL DOWN• command displays the line following the current line 
and updates the current line pointer; •.•, to point to the line .displayed. If 
the current line is the last line in the text buffer, the last line is 
displayed and period •.• remains unchanged. •SCROLL DOWN• is an immediate 
co1m1and cmd must be the first character of a corrmand line to be interpreted. J/ 

CLEAR SCREEN <SHIFT-CLEAR (Model I/III)> <Fl (Model II)> 

···············~-·-····································· 
The <CLEAR> key is used to perform a functional clear screen and display 

of the initial entry n~ssage. The 11 CLEAR 11 function also performs a <BREAK> 
operation but cannot be used to interrupt output. This function is identical 
to a warm-start of EDAS and will reset automatic line nuni:>ering to its 
inti.tal value of l~~. 

On the Model I and Model III, the <SHIFT-CLEAR> key performs the •clear• 
function. The <Fl> key is used on the Model II. Consult your DOS manual for 

·the appropriate key under LOOS 6.x. 

COMMANDS· DISPLAY CONTROL 
1° 7 - 38 



\ 

\.. ... 

' ._ ... / 

Editor Assembler C0111111ands 

PAUSE <SHIFT-i (Model I/III)> <HOLD (Model II)> 
••••••••••••••••••••••••••••••••••••••••••••••• 

The <PAUSE> key is used to pause the computer during a display, during 
any assembly, or Editor Assembler printing. When a · pause is sensed, 
depression of any key except <PAUSE>, <SHIFT>, or <CONTROL> will continue the 
operation paused. It is only necessary to momentarily depress the key as a 
pause function will be held pending as soon as the key is pressed. On the 
Model I and Mode 1 UI, the <SHI FT-@> key is used as a 11pause11

• The <HOLD> key 
is used for this purpose on the Model II. · 

BREAK 
••••• 

The <BREAK> key is used to tenninate the <I>nsert mode. It is also used 
to abort an assembly in effect. It will also abort any disk I/0 operation or 
display listing. A detected <BREAK> will return EDAS to the co11111and ready. 
prompt, 11>11

• 

PAGE FORWARD <SHIFT RT-ARROW (Model I/III)> <F2 (Model II)> 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

The <SHIFT-RT-ARROW> key on the Model I and Model III is used to advance 
the display by 15 lines. The <F2> key is used on the Model II to advance the 
display by 23 lines. This c011111and is similar to the <P>rint comand except 
that the display screen is cleared prior to displaying the 15/23 lines of 
source text. --

USER PATCH SPACE· ZCMD 
•••••••••••••••••••••••• 

A 5(1-byte patch space is available for your use. A vector pointing to 
this space is located at X'58(19' (Model I/III), X'36(19' under LOOS 6.x, or 
X'37(19' (Model II). If you place a routine in this space, it can be executed 
by entering a <Z> at con1nand ready. The space currently has a RET instruction 
as the first byte which is used to return from the <Z> co11111and. 

• COMMANDS - DISPLAY CONTROL 
7 - 39 



I 

I 
I 

/ 



Cross Reference Utility 

••••••• 
The MISOSYS XREF utility is used to generate a cross reference listing 

of symbols used in your source code. Its syntax is: 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
I 

XREF filespec/REF {(LEN•val,PAGE•val,LINES•val,EQU,LIMIT)} I 
I 

f11espec is the specification of the reference data I 

LEN 

PAGE 

LINES 

EQU 

LIMIT 

file generated by the -XR switch of EDAS. If I 
the file extension is omitted, "REF" is used.· t~ 
is the le~gth of your print line (the default 
value is ~). 

I 
I 
I 

is the maximum number of lines per page (the I 
default is 66 for Mod I & II, 67 for Mod III). I 

I 
is the number of lines to print on a page (the I 
default is 56 for Mod I & II, 57 for Mod III). I 

is used to generate a file of EQUates instead 
of the cross reference listing. 

I 

l 
I 

is used to limit the file of EQUates to those I 
symbols containing a special character. 

Note: the format of "value11 is PARM•ddd or PARM=X 1 hhhh 1
• 

I 
I 
I 

PAGE and LINES are not supported under LOOS 6.x or Model II I 

There are no parameter abbreviations. 
I 
I 
I 

~--···············································•·=••·••=•=•• 
The XREF/CMD utility generates a symbolic cross-reference listing which 

includes a sorted list of all defined labels, the file of origin of the 
definition, the line number of the definition, the value of the definition, 
and the line numbers of all statements referencing the label. If "-GET" or 
"*SEARCH• files are used in the assembly process, XREF will even identify the 
filename of the file containing the references. XREF will not identify 
unresolved labels. Therefore, make sure that either all labels are resolved 
during the assembly that generates the XREF data file, or you do not need the 
line numbc.?rs of those unresolved references appearing in the cross, reference 
listing. 

XREF can also be used to generate an assembler source file of EQUates of 
all symbols used in the program being assembled or a subset of all symbols 
used. The LIMIT parameter is used to limit the EQUates to only those symbols 
having at least one special character in the symbol name. 

• 
UTILITY • XREF 

8 - 1 



Cross Reference Ut111ty · 

XREF uses, as input, the reference data file which is optionally 
generated by the -XR switch during the LISTING pass of EDAS (phase 2). XREF 
cannot function without this data file. You need not enter the file 
extension, /REF, as it will be assumed if omitted. 

The XREF command line parameters enclosed in parentheses are entirely 
optional. The may be used as follows: 

LEN 

This parameter controls the printed line length during the XREF listing. 
If omitted, a value of 8~ is assumed to deal with 8~-colu1111 line printers. If 
you are using a wide-carriage printer (typically 132 colu1111s), then XREF CaQw 
use the entire print line by specifying the parameter as: 

XREF (LEN•l32) 

PAGE 

, This parameter controls the page size. A value of 66 lines per page (67 
on the Model III due to its line counter starting from 1 instead of S) is 
used. If your paper is shorter or longer, you can respecify the page length 
from the conmand line. For instance: ·-

XREF f11espec (PA&E•Sl,LINES-41) 

will set the page length to 51 lines per page and initialize to print 41 
lines. 

LINES 

This parameter controls the quantity of lines printed on a page before a 
page eject (form feed) is generated. If omitted, a value of 56 printed lines 
1s used. You can respecify the quantity of lines you want printed by a 
command similar to that shown for the PAGE parameter. 

EQU ---
This parameter controls the generation of the EQUate file. If this 

parameter is entered, then the cross reference listing is suppressed and a 
source file of symbols equated to their value i~ generated. The filespec used 
to write the EQUate file will be constructed using the filename and drive 
specification of the •/REF• file. A f11e extension of •JEQU• will be used. If 
this parameter is entered, then LEN, PAGE, and LINES will be ignored. 

Symbols defined by the "DEFL" pseudo-OP will be maintained as DEFL's in 
the EQUate file. The file will be created without a header and without line 
numt>ers • 1t will be a standard EDAS Version IV file. 

.. 
UilLIT, • Aitr 

8 • 2 

-.._ --. 

/ 
I 



\ 

---

Cross Reference Utility 

LIMIT -----
This parameter controls what symbols are written to th.e EQUate __ JUe. __ !£~-­

entered in addition to the 11 EQU 11 parameter, ·then the EQUate file will be 
limit·ec.t to those symbols that contain at least one special character (a 
character other than A-Z, j-9). 

Cross-Reference Listing 
••••••••••••••••••••••• 

The listing requires two passes through the data file. This is/Gone to· 
conserve memory space so that listings for extremely large programs can be 
processed. If you are generating the cross reference listing, three 
informative messages will be displayed prior to generating the printer 
output. •Building symbols declared• will be displayed during the first pass 
through the data file as XREF creates a table of information pertinent to all 
symbols declared. After this table is cofl1)leted, the message, "Sorting synbol 
table• will be displayed. The operation being performed is self evident. A 
second pass through the REF data file will be made while the message, 
•Building syni)ols referenced• is displayed. This pass is used to create a 
second table of information pertinent to all references to symbols. 

The listing will contain a heading on each page. This heading is 
coq,osed of· the system DATE and TIME, the TITLE extracted from the source 
code if a TITLE pseudo-op was used in the asseni> ly process, and a page 
number. The heading line requires a minimum of 74 colunras. Thus, if you 
specify a LEN parameter of less than 74, the heading will either wrap around 
on your printer or be truncated - depending on how your printer handles 
longer lines. The reference colunras will include: 

Origin ------
The filename of the file containing the declaration of the symbol. If 

the symbol was declared by a statement located in memory, the ORIGIN will be 
listed as 11$MAIN 11

• Otherwise, the ORIGIN will list the filename of the 11*GET 
filespec• or 11*SEARCH library•. 

Symbolic Label 

--------------
This column contains the symbol name of the declaration. If the symbol 

was defined by a 11 DEFL 11 pseudo-OP, a plus sign, 11+", will precede the symbol 
name to denote this fact. - references will only be printed against one of 
the label definitions; however, all declarations will be shown. If the symbol 
name was actually the name of a MACRO, it will be prefixed by a pound sign, 
.. , .. and the •value" field will be irrelevant. The symbolic labels are sorted 
in ascending alphabetical order. 

UTILITY - XREF 
8 - 3 



Cross Ref erenc:e Ut111 ty ·-

Value -----
This coluim contains the value of the symbol as determined during the 

assembly process. If the symbol shows a DEFL'def1nit1on, the value will be 
the first defined value. If a MACRO name is indicated, the value shown is 
actually toe storage location of the MACRO prototype and model • it will 
serve no useful purpose. 

Line# 
---·-

This colurm contains the line number of the source line declaring or 
defining the symbol. The symbol is defined where the symbolic name is used Jo 
the label field of a source statemen;. v 

Usage 

This coluim contains the filename of the file containing a reference to 
the label. If the label is referenced from a statement resident in memory, 
then the f11ename · will be listed as $MAIN. Otherwise 1t will be the filename 
field of the ~ET filespec pseudo-OP fetching the file or the library 
filespec if a *SEARCH was involved. 

Line# of References 

·······----------·-
All references to the label will be 11sted in this field. It will 

contain the line number of the source statement containing the reference. All 
of the references listed on a print line will be contained in the file 
identified under the usage colum. Whenever the Usage file changes, it w111 
cause a new line to be generated in the listing. 

Statistics 

-----------
At the conclusion of the cross reference listing~ two additional items 

of information are listed. The quantity of symbols declared is listed along 
with the quantity of references associated with those declarations. 

• 

UTILITT - XREF 
8 • 4 

/ 



\ 
,_ 

Tape-to-Disk Utility 

The MISOSYS TTD utility is used for transferring to disk, a source 
cassette file that was created with the Radio Shack EDTASM, Microsoft 
EDTAS~+, or other compatible editor assembler. TTD is not supported under 
LOOS 6.x or on the Model II. 

To execute the TTD utility, at your DOS ready, simply use the syntax; 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

·rro C:d} 

·····••!I••······················································ 
TTD is used to transfer a source cassette file to disk. The filespec 

will be constructed using th~ filename found on the cassette tape file and 
the file extension "/ASM". If the optional drive specification, ":d• (where 
"d" is the drive nunber of the drive receiving the disk file), is entered 
with the TTD command line, it will be used in the construction of the file 
specification. 

TTD will prompt you to ready the cassette via the message: 

Ready cassette and <ENTER> -> for· a Model I 
Ready·cusette and enter <H,L> ->fora Model III 

The <H,L> entry for Model III users wi 11 select either High speed cassette 
operation (15~~ baud) or Low speed cassette operation (5~~ baud). Respond to 
the prompt by depressing the <ENTER> key if you are a Model I user, or the 
correct baud rate character if you are a Model III user. 

The cassette source file will be transferred to disk. TTD will then 
return to DOS. 

• 
UTILITY .. TTD 

9 - 1 



. , 



Error Messages 

GENERAL 
••••••• 

EDAS Version IV recognizes three types of errors. These are: 

·······················••=••••=•=••············••=••··········· I 
I Comand ,. 
I 
I 
I DOS 
I 
I 
I 
I Asselli>ler 
I 
I 
I 

This is an EDAS comand syntax error. The 
error message is displayed and control is 
returned to comand mode. 

This. is an operating s»tem disk I/0 error. 
The error message is displayed and control is 
returned to comand mode. 

These errors may occur while executing an 
Assemble comand. There are three types: 
terminal, fatal, and warning. 

DOS disk 1/0 errors can also be received during 
I/0 error occurs, the assembly will be aborted and 
to EDAS conmand ready. 

an assembly. When a disk 
control will be returned 

Three di-fferent types of assembler errors can occur. The types relate to 
the severity of the error. These types are: 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Tena1n.a1 

Fatal 

Warning 

Assembly is terminated and control is returned 
to comand mode. 

I 
I 
I 
I 

Processing of the line containing the error 
irrmediately stopped and no object code is 
generated for that line. Assembly proceeds 
with the next statement. 

is .I 

The error message is displayed and assembly of 
the line containing the warning continues. The 
resulting object code may not be what the 
prograD111er intended. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

.. MESSAGES . 
10 - 'l 



Error Messatges 

Following is a list of all error messages and an explanation of each. 

COMMAND ERRORS 
•1111••·········· 
l .> Buffer fu 11 

-----------
There is no more room in the text buffer for adding text. 

2.> Bad parameter(s) 

----------~-----
i' -Any conmand line not entered according to the syntax appropriate for 

that conmand will generate this error message. Also, if you atte~t to load a 
file that is not a valid source code file, this message may be displayed. The 
<K>fll command requires entry of a filespec, which if omitted, will also 
display this error message. 

3.> Illegal command ______ .., ________ _ 

The first character of the conmand line entered does not specify a valid 
Editor Assembler conmand. 

4.> Line number too large 

---------------------
Renuni>ering with the specified starting 11ne number and increment would 

cause line(s) to be assigned nuni>ers greater. than 65529. The renumbering is 
not performed. This message would also be displayed if you atteq,ted to 
INSERT a line with a line number exceeding 65529. 

5.> No room between lines 
···················~-

The next line number to be generated by INSERT or REPLACE would be 
greater than or equal to the 11ne number of the next line of text in the edit 
buffer. The increment must be decreased or toe lines in the buffer 
renumbered • 

6.> No such line 
............... 

A line specified by a conmand does not exist. The conmand is pot 
performed. 

• 

MfSSA&fS 
lfl .. 2 

--~ 

)· 

---,-.. 
- \ 

L 



Error Messages 

7.> No text in buffer · 

A conmand requiring text in the buffer was issued when the text buffer 
was .empty. The comands <L>oad, <I>nsert, <Q>uery, ·<S>witch, <B>ranch, 
<U>sage, <V>iew, e<X>tend, <K>ill 9 Dot<.>, <Z>, and ONE <l> can be executed 
when the text buffer is empty. All other convnands require at least one line 
of text to be in the buffer. 

8.> String not found 

The string being searched for by the <F>ind conma~d could not be~ found . 
between the current 1 i ne and the end of the text buff er. This message wi"lr·-··------­
a 1 so be displayed at the completion of a global change conmand. 

DOS ERRORS 
aaaa:11:sa:au:a 

.The standard DOS error messages will be displayed if the DOS returns an 
error code after return from any disk operation. Consult your DOS operating 
manual for explanations of those errors. During most error handling, the 
abbreviated form of the error message will be displayed. If an I/0 error is 
detected during an assembly, the long form of the error message will be 
displayed. This provides an observance as to which file was affected by the 
I/0 error. 

Any attempt to load or *GET a file that has a line longer than 128 
characters will result in "Load file format error". 

TERMINAL ERRORS 
•••••a••••••••• 

l.> Memory overlay aborted 
----------------------
During an assembly to memory, a block of code was assembled that would 

load into a memory region other than the spare text buffer area. Your program 
will not be permitted to load to an address below the end of the text buffer 
or above the symbol table. Use the Usage co11111and to locate the first 
available memory address. If you are using MACROs, the first available memory 
address· is indeterminate as the MACRO processor uses the memory area 
1mrried1ately following the text buffer for a MACRO model and string buffer 
storage area. 

2.> Symbol table overflow 
~-~------------------
There is not enough memory for the assembler to generate your program's 

symbol table. You have three options: 

. 
# MESSAGES 

111 - 3 



Error Messages 

l.> Remove comnent lines and/or co11111ents following Z-8~ code 
operands. This may free up enough space to perform the assembly. 

2.> Divide your program into two or more modules and assemble them 
using the l\'GET filespec directive. 

3.> Extend the text buffer area, expand your source, then assemble 1t 
'''.'f 

using the -GET filespec directive. 

3.> *GET or *SEARCH error 

~--------------------
A "*GET filespec" or "*SEARCH library• assembler di rect1ve was found in 

a library member. A searched library cannot have •*GETs• or nested 
"*SEARCHe$". 1~ 

4.> Member definition error: filespec(member) 

---------~-------------------------------
This is a result of a fetched *SEARCH member not resolving the symbol 

reference invoking its fetch. 

FATAL ERRORS ............. 
l.> Bad label 

The character string found in the label field of the source statement 
does not match the criteria specified under ASSEMBLY LANGUAGE INFO - LABELS. 

2.> Expression error 

----------~-----
The operand field contains an 111-formed expression. 

3.> Illegal addressing mode 

-----~--------------~--
The operand field does not specify an addressing mode which is legal 

with the specified OPCODE. \."."i . . . 

4.> Illegal opcode 
------------·--

The character string found 'fn the opcode field of the source statement 
is not a recognized instruction mnemonic, assembler pseudo-op, or MACRO name. 

·:· ·· MESSAGES l" -4 
::_,,/ 



Error Mess1ges 

5.> Missing information. 

-------------------
· Information vital to the correct assembly of the source line was not 

provided. The OPCODE ·is missing or the operands are not cof!l)letely specified. 

6.> Too many nested *GETs 

-----~---------------
~ET filespec nesting ~ceeds the number of levels supported. The ~ET 

will be ignored. 

7.> Unclosed conditional 

The "END" statement or end of source was reached and an open •tF• 
conditional block was still pending. Your program ·is missing the closing 
"ENOIF 11

• 

8.> ENDIF without IF 

An 11 ENDIF• pseudo-op was detected without a corresponding conditional 
11 IF 11 or 11 IFxx• in effect. The •ENDIF• will be ignored • 

. '\ 9 .. > ELSE without IF 
cm••-••-•••---•-. 

An •asE• statement was detected without a preceding •1F• conditional 
segment. 

l~.> Filespec required 

-----------------
A ~ET or *SEARCH directive was detected but the statement· did · not-··· 

contain the required file specification. The *GET or *SEARCH will be ignored. 

11.> Bad parameter(s) 

----------·-----
When output preceding a MACRO definition, it implies an error in the 

parameters of a MACRO. 

12.> Nested MACRO ignored 

A macro definition statement was nested in the model of another macro. 

• -~-
MESSAGES 
lj ... ~ 



Error Messages 

13.> Missing MACRO name 

---------------·--
The name field of the macro, definition statement did not contain the 

macro name. The macro will not be defined. 

l.4.> ENOM without MACRO 

----·-------------
An ENDM pseudo-OP was detected while not in a macro definition phase. It 

will be ignored. 

15.> Too many parameters 

------------------- •v 
In a macro ca 11. the number of parameters passed exceeded the number 

defined for the macro. The macro call will not be expanded. 

16.> Too many nested MACROs 

----------------------
The number of pending nested macro calls exceeds the current nest level 

supported. The macro call will not be expanded. 

17.> MACRO forward reference 

-----------------------
A macro call was detected prior to the definition of the macro. The 

m~cro call will not be expanded since gross phase errors would result. 

18.> Multiply defined MACRO 

----------------------
A macro definition statement was detected for a macro already defined. 

The subsequent definition will be ignored. 

WARNINGS 
•••••••• 
l.> Branch out of range 

-------------------
The destination of a relative juq> instruction (JR or DJNZ) is not 

within the proper range for that instruction. The instruction is asseni>led as 
a br1nch to 1tse1f by forcing the offset tQ hex X'FE'. 

2.> F1el~ overflow 

---------------
A nuni>er or expression result specified in the operand field is too 

large for the specified instruction operand. The result is truncated to the 

MESSA&ES 
lli - 6 

) 

-
< 
I 



Error Messages 

~ largest allowable nuni>er of bits. This error would also be output during a 
global change if a resultant line would exceed 128 characters. 

3.> Multiply defined symbol 

the operand field contains a reference to the symbol which has been 
defined 1n another line. The first definition of the s,Yll'bol is used to 
assemble the line. 

4.> Multiple definition 

----·--------------
The source line 1s atte~ting to illegally redefine a synt>cff. The 

original definition of the symbol is retained. Symbols may only be redefined 
by the DEFL pseudo-OP and only if they were originally defined by DEFL. 

5.> No END statement 

----------------
The program END statement is missing. Note that if your program is 

missing the •END• statement, EOAS cannot detect an unclosed conditional. 
Also, be aware that if your program has a FALSE unclosed conditional, then 
the •END• statement will NOT be detectable - even if present. 

> 6.> Undefined_ symbol 

------------------
The operand field contains a reference to a synool which has not been 

defined. A value of zero 1s used for the undefined synt>ol. 

. 
~ 

MESSAGES 
lli - 7 



' '-



Technical Specifications 

OBJECT FILE FORMAT 
•••••••••••••••••• 

The disk file object code format consists of a header record, an 
optional co11111ent record, one or more load block records, and a transfer 
addre$S record. The specific formats of these records are as follows: 

Header Record 

-------------
The file header record consists of the hex byte X'l15' (record type) 

which indicates the header field of an object file. It is followed by the 
header length b}'te which indicates the length of the header data folJ9wing. 
The length of the header data is constant in EDAS and 1s six bytes. The data 
is constructed as the first six bytes of the object code file name field and 
is filled out with spaces 1f the file name is less than six characters. 

Conrnent Record 
. . 

--------------
This record 1s optional. It is generated by the ncow• pseudo-OP. It 

consists of a record type byte of X'lF' followed by a length byte which is 
the length of the c011111ent. The conment data! itself, follows. 

Load Block Record 

The load block record starts with a record type code of x•g1• which 
indicates it-· is a load block. A 1-byte length is next. This indicates the 
length of the object code data plus the 2-byte block load address. The length 
is encoded as a modulo 256 value (object code length of 253 • X'FF', object 
code length of 254 • x•~~•, object code length of 256 will show as X'l12' ). 

The block length byte is followed by the 2-byte block load address which 
is the address that will be loaded with the first byte of the block. 

Finally the object code block i11111ediately follows for as many bytes as 
two less than the block length. 

Transfer Address Record 

-----------------------
The Transfer address record (TRAAOR) starts with a record type of x•~2•. 

An X 1112 1 is written to indicate. the. length of the entry poirit address. This 
is then followed by the 2-byte entry point or trarisfer address generated from 
the label or constant in the operand field of the assembler source END 
statement. As 1s the case with all 16-bit data values, the TRAAOR data has 
the low-order byte of the address followed by the high-order byte. 

.. TECH INFO 
11 - 1. 



Technical Spec:1f1eat1ons 

SOURCE FILE FORMAT 

· The source code file format used by EDAS has no header nor line numbers. 
Headers· and numbers are entirely optional and can be generated with 
appropriate switches in the <W>rite command. The formats are as follows: 

Header Record 
••••-•ca•••-caca 

A header record as described under "Object file format" is optionally 
used for source files with the exception that the first byte is a hex X'D3' 
(X'53' - with bit 7 set) to identify the file as source, inmediately followed 
by a 6-character name (the name length byte is omitted). Files·written with 
"W+" contain this header. .,.~ 

Text Lines 

·---------
Text lines 1re written in ASCII each cofll)osed of an optional 5-character 

line number (bit 7 ·is set), .a spi:iJ;e~ th~ tent ihne~ ,~ndfog with an <ENTER> 
(X 1 l}0 1 )Q Files written with the 11 ~11 11 command incor·pc:wate both the 5'"'character 
line number and following space. 

End-of-File Hark 

The file e111d is indicated by an end-of-file mJrk of X'lA' which woul~ be 
in the first character po$1tion of a text line (or 1st byte of the line 
number if line nun'bered files are used). 

REFERENCE DATA 1:ILE FORMAT 

·············••11••········ 
The reference data file is a compressed collection of d4ta correspondi'ng , 

to each symbol definition and reference. The file contains a title record, 
and definition/ reference records. The format of these records is as follows: 

Title Record 

------------
The title record is always present even though the assembler source file 

stream may or may not have supplied a TITLE pseu~o-OP. The title record is 28 
characters longo If the source files cHd hot contain•, a· TITLE. pseudo-OP·,, the 
record will be filled with spaces. 

Definition/Reference Records 

--------------------·-------
These records contain the data for either a symbol definition or 

reference. It is composed of a filename field, a line nuni>er field, a type 

• .. 

TECH INFO 
11 .. 2 



' 

Technical Specifications 

field,- a value field (omitted for references), and a symbol name field. These 
fields are defined as follows: 

Filename Field 

----------------
This field wi 11 be either an eight character filename or a hex X1 22 1

• If 
a hex X'22'. then the filename reference is the same as the previous record. 

Line Numer Field 

-----------------
This field contains the line number of the definition or reference 

, statement in low-order high-order form. 

T)Pe Field 

The type field contains an X'f10' for a reference, an X1IU 1 for a · 
definition. or an x•g2• for a DEFL defined symbol. 

Value Field ......... .,.... " 

The value field contains the defined value of the synt,ol. This field 1s 
omitted for references (type field• 0). 

Name Field 

The name field contains the symbol name. It is terminated with a 
carriage return cx•go• ). If the symbol is the name of a macro, the first 
character of the name has the high-order bit set. 

• TECH INFO 
11. '" 3, 



Technical Spec1f1cat1ons ·· 

LINKAGE TO DEBUGGING (Model I/III or LOOS 6.x only) 

In order to facilitate the debugging of user generated programs, a 
number of features have been built into EDAS. It provides the option of 
assembling source code directly to memory. It provides a conmand to transfer 
control to a user-supplied address (via the <B>ranch corrmand). 

A re-entry address to the Editor Assembler has been provided. If at any 
time during the debugging phase, you want to return to the Editor Assembler 
without reinitializing it (which would have deleted the entire text buffer), 
and are under the control of a debugging utility that does not utilize memory 
from X'54vJli' (X'32(1!iJ' under LOOS 6.x) to the protected HIGH$, issue a jump 
convnand to X'5803' (X'36~3• under LOOS 6.x). Alternately, you can provide ,4v 
"JP 581i3H• (or JP 36~3H under LOOS 6.x) in your program as an exit and return 
to EDAS. A return to the Editor Assembler will be performed and the text 
buffer pointers will be maintained. If your program has maintained the 
integrity of the stack poi.nter, a RET instruction wi l1 return to the EOAS 
comand prompt as the top of the stack contains the prompt address when an 
exit is made via the "B"ranch comand. · 

EDAS disables the automatic entry to DEBUG on <BREAK> to avoid 
inadvertantly entering DEBUG by depressing <BREAK> to exit an <I>nsert or 
abort an assembly. In order to enter DEBUG directly from EDAS, perform a 
<S>ranch coRIBand to address X •3~ 1 ., 

TECH InFO 
.11 - 4 

{·'" u 

,'i 

t_' /I 

rt 

E 

O.f.i 

fb 



LC 1.1 Errata - 07/~1/83 

1.0 - cursor() 

Correct the syntax of cursor() on page 4-34 and Appendix B-1 to read 
cursor(col,row); 

2.0 #option erronnsg ,,. · 

Reference the additional option, "erron:sg" on pages 3-8 and 5-1/5-2. 
This option permits you to suppress the automatic display of operating system 
error messages generated on file I/0 errors and generally displayed by the 
DOS @ERROR routine. Suppress the display by specifying "#option errormsg 
OFfl'. The default of errormsg is ON meaning system error messages will ·be 
di s pl ay~d • . . 

3.0 ~option getnl 
' ' ~ 1,/ 

Reference the additional option, "getnl" on pages 3-8 and 5-1/5-2. This,~",•;, 
,..-:--,. r "'\ 

option refers to the handling of the newline character (\n) within the · 
fgets() function. According to K&R, the newline should be included in the 
buffer returned by fgets(). Under LC 1.0, newline was stripped from the 
buffer. LC 1.1 has been brought into agree:::ent with K&R on this point •. Jf 
11#option getnl OFF" is specified, then fgets() will strip· the newlil'le as,,· 
under LC 1.0. If you have programs compi1ed under 1.0 that ·require the 
ne\v 1 i ne be stripped, you can either reprogram your C source to coincide with 
the language as K&R s::,ecify, or you can specify the option as shown. 

4.0 automatic variables 

Automatic _._variable names may be re-used within a nested block. LC 1.0 
did not support this although the LC manual did not reflect the limitation • 

• 

•;:•,• 

':,a: 



/ 




